
A Guide to the DiFX Software Correlator
Version 2.8

Walter Brisken

National Radio Astronomy Observatory

August 11, 2023

Contents

1 Introduction 1
1.1 Notation . 1

2 The DiFX correlator 1
2.1 NRAO-DiFX 1.0 . 1
2.2 NRAO-DiFX 1.1 . 2

2.2.1 Bugs fixed . 2
2.2.2 Known problems . 3

2.3 DiFX 1.5.0 . 3
2.3.1 Bugs fixed . 4

2.4 DiFX 1.5.1 . 4
2.4.1 Bugs fixed . 4

2.5 DiFX 1.5.2 . 5
2.5.1 Bugs fixed . 5
2.5.2 Known problems . 6

2.6 DiFX 1.5.3 . 6
2.6.1 Bugs fixed . 7

2.7 DiFX 1.5.4 . 8
2.7.1 Bugs fixed . 9

2.8 Known bugs . 9
2.9 DiFX 2.0.0 . 9

2.9.1 New features . 9
2.10 Known bugs . 9
2.11 DiFX 2.0.1 . 9

2.11.1 New features . 10
2.11.2 Bug fixes . 10

2.12 DiFX 2.1 . 10
2.12.1 New features . 10
2.12.2 Bug fixes . 11

2.13 DiFX 2.1.1 . 12
2.14 DiFX 2.2 . 12

2.14.1 New features . 12
2.14.2 Bug fixes . 12

2.15 DiFX 2.3 . 13
2.15.1 New features . 13
2.15.2 Bug fixes . 13

2.16 DiFX 2.4 . 13
2.16.1 New Features . 13
2.16.2 Bug fixes . 14

2.17 DiFX 2.5.1 . 15
2.17.1 New features . 15

1

2.17.2 Bug fixes . 15
2.17.3 Caveats . 16

2.18 DiFX 2.5.2 . 16
2.18.1 Bug fixes . 16

2.19 DiFX 2.5.3 . 16
2.19.1 Updates . 16

2.20 DiFX 2.5.4 . 16
2.20.1 New features . 16
2.20.2 Bug fixes . 17
2.20.3 Caveats . 17

2.21 DiFX 2.5.5 . 18
2.21.1 New features . 18
2.21.2 Bug fixes . 18

2.22 DiFX 2.6.1 . 18
2.22.1 New features . 18
2.22.2 Bug fixes . 19
2.22.3 Caveats . 19

2.23 DiFX 2.6.2 . 19
2.23.1 New features . 19
2.23.2 Updates . 19
2.23.3 Bug fixes . 20
2.23.4 Caveats . 21

2.24 DiFX 2.6.3 . 21
2.25 DiFX 2.7.1 . 21
2.26 DiFX 2.8.1 . 21

2.26.1 New features . 21
2.26.2 Updates . 22
2.26.3 Bug fixes . 22
2.26.4 Caveats . 22

3 Features left to implement 22
3.1 DiFX and AIPS . 23

4 DiFX and pulsars 23
4.1 Pulse ephemeris . 24
4.2 Bin configuration file . 25

4.2.1 Binary gating . 25
4.2.2 Matched-filter gating . 25
4.2.3 Pulsar binning . 25

4.3 Preparing correlator jobs . 26
4.4 Making FITS files . 26

5 Conventions 26
5.1 Clock offsets and rates . 26
5.2 Geometric delays and rates . 27
5.3 Antenna coordinates . 27
5.4 Baseline coordinates . 27
5.5 Visibility phase . 28

2

6 Reference guide to programs and utilities 28
6.1 apd2antenna (package : difx2fits) . 28
6.2 avgDiFX (package : difxio) . 28
6.3 bp2antenna (package : difx2fits) . 29
6.4 calcif2 . 29
6.5 CalcServer . 30
6.6 checkdir (package : mk5daemon) . 31
6.7 checkmpifxcorr (package : mpifxcorr) . 31
6.8 cleanVDIF (package : vdifio) . 32
6.9 condition (package : nrao difx db) . 32
6.10 condition watch (package : nrao difx db) . 33
6.11 countVDIFpackets (package : vdifio) . 33
6.12 cpumon (package : difxmessage) . 33
6.13 diffDiFX.py (package : vis2screen) . 34
6.14 difx2fits . 34
6.15 difx2mark4 . 37
6.16 difxarch (package : nrao difx db) . 37
6.17 difxbuild . 38
6.18 difxcalc11 . 38
6.19 difxcalculator (package : difxio) . 38
6.20 difxclean (package : nrao difx db) . 39
6.21 difxcopy (package : misc utils) . 39
6.22 difxdiagnosticmon (package : difxmessage) . 39
6.23 difxlog (package : difxmessage) . 40
6.24 difxqueue (package : nrao difx db) . 40
6.25 difxsniff (package : SniffPlots) . 42
6.26 difxspeed (package : vex2difx) . 42
6.27 difxusage (package : nrao difx db) . 42
6.28 difxvmf (package : calcif2) . 43
6.29 difxwatch (package : difxmessage) . 43
6.30 DiFX Operator Interface . 44
6.31 e2ecopy (package : nrao difx db) . 44
6.32 errormon (package : difxmessage) . 45
6.33 extractSingleVDIFThread (package : vdifio) . 45
6.34 extractVDIFThreads (package : vdifio) . 45
6.35 fakemultiVDIF (package : vdifio) . 45
6.36 fileto5c (package : mark5daemon) . 45
6.37 filterVDIF (package : vdifio) . 45
6.38 generateVDIF (package : vdifio) . 45
6.39 genmachines (package : mpifxcorr) . 45
6.40 getshelf (package : nrao difx db) . 46
6.41 jobdisks (package : mpifxcorr) . 46
6.42 joblist (package : mpifxcorr) . 47
6.43 jobstatus (package : mpifxcorr) . 48
6.44 listcpus (package : mk5daemon) . 49
6.45 makefits (package : difx2fits) . 49
6.46 makemark4 (package : difxdb) . 50
6.47 m5bstate (package : mark5access) . 50
6.48 m5d (package : mark5access) . 50
6.49 m5findformats (package : mark5access) . 51
6.50 m5fold (package : mark5access) . 51

3

6.51 m5pcal (package : mark5access) . 52
6.52 m5slice (package : mark5access) . 53
6.53 m5spec (package : mark5access) . 53
6.54 m5test (package : mark5access) . 53
6.55 m5time(package : mark5access) . 54
6.56 m5timeseries (package : mark5access) . 54
6.57 m5tsys (package : mark5access) . 54
6.58 mk5cat (package : mk5daemon) . 54
6.59 mk5control (package : mk5daemon) . 55
6.60 mk5cp (package : mk5daemon) . 56
6.61 mk5daemon (package : mk5daemon) . 57
6.62 mk5dir (package : mark5daemon) . 58
6.63 mk5erase (package : mark5daemon) . 59
6.64 mk5mon (package : difxmessage) . 59
6.65 mk6cp (package : mark6sg) . 60
6.66 mk6gather (package : mark6sg) . 60
6.67 mk6ls (package : vdifio) . 60
6.68 mk6mon (package : difxmessage) . 61
6.69 mk6summary (package : mark6sg) . 61
6.70 mk6vmux (package : vdifio) . 61
6.71 mpifxcorr . 61
6.72 oms2v2d (package : vex2difx) . 62
6.73 padVDIF (package : vdifio) . 62
6.74 plotapd (package : SniffPlots) . 62
6.75 plotbp (package : SniffPlots) . 63
6.76 plotwt (package : SniffPlots) . 63
6.77 printDiFX.py (package : vis2screen) . 63
6.78 printVDIF (package : vdifio) . 63
6.79 printVDIFgaps (package : vdifio) . 64
6.80 printVDIFheader (package : vdifio) . 64
6.81 psrflag (package : difxio) . 64
6.82 record5c (package : mark5daemon) . 64
6.83 recover (package : mk5daemon) . 64
6.84 reducepoly (package : difxio) . 65
6.85 searchVDIF (package : vdifio) . 65
6.86 splitVDIFbygap (package : vdifio) . 65
6.87 startdifx (package : mpifxcorr) . 65
6.88 statemon (package : difxmessage) . 66
6.89 stopmpifxcorr (package : mpifxcorr) . 67
6.90 stripVDIF (package : vdifio) . 67
6.91 tabulatedelays (package : difxio) . 67
6.92 testdifxinput (package : difxio) . 68
6.93 testdifxmessagereceive(package : difxmessage) . 68
6.94 testmod (package : mk5daemon) . 69
6.95 testseqnumbers (package : difxmessage) . 70
6.96 vdif2to8 (package : vdifio) . 70
6.97 vdifbstate (package : vdifio) . 70
6.98 vdifChanSelect (package : vdifio) . 71
6.99 vdifd (package : vdifio) . 71
6.100vdiffold (package : vdifio) . 72
6.101vdifspec (package : vdifio) . 73

4

6.102vex2difx . 73
6.102.1 VDIF issues . 74
6.102.2 Mark5B issues . 74
6.102.3 Media specification . 75
6.102.4 Pulsars . 76

6.103vexpeek (package : vex2difx) . 76
6.104vlog (package : vex2difx) . 76
6.105vmux (package : vdifio) . 77
6.106vsn (package : mk5daemon) . 77
6.107vsum (package : vdifio) . 78
6.108zerocorr (package : mark5access) . 79

7 Description of various files 79
7.1 .aapd . 79
7.2 .abp . 80
7.3 .acb . 80
7.4 .apc . 81
7.5 .apd . 82
7.6 .bandpass . 82
7.7 .binconfig . 83
7.8 .bootstrap . 84
7.9 .cablecal . 85
7.10 cal.vlba . 85
7.11 .calc . 85
7.12 .difx/ . 88

7.12.1 Visibility files . 88
7.12.2 Pulse cal data files . 89
7.12.3 Switched power files . 90

7.13 .difxlog . 90
7.14 .speed . 90
7.15 .speed.out . 91
7.16 $DIFX MACHINES . 91
7.17 .dir . 92
7.18 .filelist . 92
7.19 .FITS . 92
7.20 .fitslist . 93
7.21 .flag . 94
7.22 .<antId>.flag . 94
7.23 .channelflags . 94
7.24 flag . 95
7.25 .im . 95
7.26 .input . 96

7.26.1 Common settings table . 97
7.26.2 Configurations table . 97
7.26.3 Rule table . 97
7.26.4 Frequency table . 98
7.26.5 Telescope table . 98
7.26.6 Datastream table . 99
7.26.7 Baseline table . 99
7.26.8 Data Table . 100

7.27 .joblist . 100
7.28 .jobmatrix . 101

5

7.29 .lag . 101
7.30 .log . 101
7.31 .machines . 102
7.32 .mark4list . 102
7.33 .oms . 103
7.34 .params . 103
7.35 pcal . 103
7.36 .polyco . 103
7.37 .shelf . 104
7.38 .threads . 104
7.39 tsys . 104
7.40 weather . 104
7.41 .wts . 105
7.42 .v2d . 105
7.43 .xcb . 112
7.44 .vex, .skd, .vex.obs, & .skd.obs . 112
7.45 .vis . 113
7.46 .zerocorr . 113

8 XML message types 113
8.1 DifxAlertMessage . 115
8.2 DifxCommand . 116
8.3 DifxLoadMessage . 116
8.4 DifxParameter . 117
8.5 DifxSmartMessage . 117
8.6 DifxTransientMessage . 118
8.7 DifxStart . 119
8.8 DifxStatusMessage . 120
8.9 DifxStop . 121
8.10 Mark5DriveStatsMessage . 121
8.11 Mark5StatusMessage . 121
8.12 Mark5VersionMessage . 122

9 DiFX alert messages 124
9.1 Fatal . 124
9.2 Severe . 127
9.3 Error . 127
9.4 Warning . 131
9.5 Info . 134
9.6 Verbose . 134
9.7 Debug . 134

10 Acknowledgements 134

1 Introduction

This manual is intended for many different audiences. Typically a particular reader will only need to be
concerned with a small portion of this guide, but there are a number of cross-references between sections.
This manual assumes some familiarity with Mark5 units, Linux, and the general way in which a VLBI
correlator is used. The following topics are discussed: running DiFX, coexistence issues with the VLBA
hardware correlator, explanation of various file/document types, and detailed installation instructions. This

6

manual covers DiFX version 2.5 and will be kept up to date with each official update to DiFX. Please report
any errors that are found in this manual to wbrisken@nrao.edu .

1.1 Notation

Text written in typewriter font represents literal text and is to be transcribed verbatim when typing and
text in italics is to be substituted with other text, such as the specific value of the named variable. To
be consistent with this notation, all mention of programs by name or filenames (and portions thereof) are
written in typewriter font.

2 The DiFX correlator

This document is centered around the NRAO installation of the DiFX [2] software correlator and its sup-
porting software. Much of the contents here applies to other installations of DiFX as well, but keep in mind
that not a lot of effort is made to generalize these instructions. Fig. 1 shows the general data flow-path
within the DiFX software correlator system.

Past, present, and future versions of DiFX as packaged and used by VLBA operations are described in
the following subsections.

2.1 NRAO-DiFX 1.0

Versions 1.0 and 1.1 based correlation on the VLBA hardware correlator job scripts – the .fx files. This
ensures a compatibility period during which both correlators can produce visibilities with expectations of
functionally identical results, a feature critical for validation. This strategy also minimizes the required
software effort at its earliest phases. Version 1.0 came with the following features:

1. A complete path from .fx job scripts to .FITS files

2. A command-line only interface

3. Documentation (you are reading it now)

4. Support for VLBA and Mark IV formats

5. Correlation directly off Mark5 modules

6. Support for all projects types except those using special modes, such as pulsars, space VLBI, and near
field objects

7. Spectral and time resolution bounded only by practicality

While this version should handle most observations, fast frequency switching and geodesy experiments will
produce a large number of output FITS files which may be annoying to observers and the archive. Version
1.0 was available on February 6, 2008.

2.2 NRAO-DiFX 1.1

Version 1.1 builds on version 1.0 and adds the following features:

1. Used version of mpifxcorr that has gone through code merge with the official version

2. Blanking of data replaced by headers (Mark4 format only)

3. Proper data weights

4. Initial Mark5B support

7

5. Support for oversampled data through decimation

6. Multicast status information for GUI interface

7. Correlation of moving and near field objects

8. Concatenation of multiple output files into a single or multiple FITS-IDI file(s)

9. Better support for jobs with multiple configuration tables

10. Playback off Mark5 modules with missing disks

11. Support for Amazon based Mark5 units

12. Completely replaced the “Makefile” system with better integrated alternative

13. Generation of delay model polynomials rather than tables, more like VLBA HW correlator

14. u, v, w values are derived from the delay model (and hence include corrections for aberration, near field
observations, and other subtle effects) and are evaluated when writing the FITS file

15. DiFX version accountability

16. Validation of data frames prior to decoding

17. Data evaluation (“sniffing”) built into FITS converter

This version was released on September 3, 2008.

2.2.1 Bugs fixed

Here are listed some of the more important bug fixes:

1. The clock offset was used with the wrong sign in the IM table.

2. Printed precision of some important numbers (RA and Dec) was increased.

3. Autocorrelations were ordered incorrectly for observations with a single polarization.

4. The Mark4 format decoder had a 1 day off bug.

5. The Mark4 format decoder had a 64×fanout sample timing offset.

6. Several causes of crashes were fixed; no known crashes remain.

7. Missing VLBA monitor data was handled badly.

8. Due to OpenMPI peculiarity, some processing nodes would get most or all of the work in some cases,
which cause the work being done on other nodes to be ignored. This was fixed by looking for results
in a round-robin manner.

9. Integrations that contain data from two adjacent scans are stripped when writing FITS files.

10. Allow FITS files larger than 2GiB in size.

2.2.2 Known problems

Known bugs as of the NRAO-DiFX 1.1 release:

1. The last couple (typically 2) integrations of a job (not a scan) tend to have low weight due to a
premature termination of data processing.

8

2.3 DiFX 1.5.0

With DiFX 1.5.0 comes a name change. Past releases of this series have been known as “NRAO-DiFX”.
The DiFX community has been largely receptive to the NRAO additions in support of mpifxcorr and it
was decided that dropping the “NRAO” was appropriate. In some cases the term “VLBA DiFX” or “VLBA
DiFX 1.5” may be mentioned. These are simply the deployment of DiFX 1.5.0 for the VLBA correlator
with some VLBA specific features. Note that the name given to the VLBA deployment of DiFX is formally
“VLBA DiFX”.

Version 1.5.0 will start allowing correlation of experiments that cannot be represented by .fx files and
will be based on vex files. Version 1.5.0 builds on version 1.1 and adds the following features:

1. Support for using a wide variety of vex files as the basis for correlation.

2. Native ephemeris-based object trajectories are supported.

3. Pulsar gating is supported.

4. Pulsar binning is supported, but not cleanly yet.

5. A graphical user interface is available for correlator operators.

6. The multicast system is fully implemented and is used monitor and control correlation and other
operations.

7. Mark5B formatted data, including its 2048 Mbps extension, is supported.

8. The VLBA DiFX Operations Plan [1] is implemented, including interface to the VLBA archive.

Non-NRAO users of DiFX 1.5.0 will still be able to use the tools provided but may not be able to take full
advantage of the database back-end without some customization; it is the aim of this document to point out
cases where the database is required. Many of the programs described in previous versions of this document
will be upgraded or overtaken by more capable replacements.

Release of DiFX 1.5.0 was announced on June 25, 2009.

2.3.1 Bugs fixed

Here are listed some of the more important bug fixes:

1. A rounding issue in mpifxcorr occasionally caused the wrong source’s UVWs to be assigned.

2. Lower side band data would come out of the sniffer portion of difx2fits with the wrong sign for
phase, rate, and delay.

3. Different rounding was used to generate start times for .input and .calc files. There are no severe
consequences of this issue.

4. Scaling in pulsar gating has been made more sane.

2.4 DiFX 1.5.1

DiFX 1.5.1 is mostly a bug fix update to version 1.5.0, but with a few new features. The new features
include:

1. Option to force job breaks (with the break parameter) has been added to vex2difx

2. Time/date formats other than decimal MJD are now accepted by vex2difx

3. Specification of data files to correlate (rather than Mark5 units) is supported in vex2difx

9

4. Specification of network parameters in vex2difx to allow correlation of eVLBI projects

5. difx2fits produces a new output file with suffix .jobmatrix provides the user with a better idea of
the mapping of jobs into .FITS files

6. A vex2difx mode for generating DiFX files useful for determining pulsar phase has been added

7. EOP values can now be provided within the .v2d file

8. Upcoming FITS-IDI keyword WEIGHTYP populated

9. Zero-weight data is not written from mpifxcorr

10. New utility checkdir to look for oddities in Mark5 module directory files

2.4.1 Bugs fixed

Here are listed some of the more important bug fixes:

1. Concatenation of jobs in the creation of .FITS files does the right thing for cases where the antenna
subsets change and where antenna reordering is done.

2. The Pulsar Gate Model (GM) .FITS file table is now correctly populated for pulsar observations.

3. Autocorrelations are written for each pulsar bin

4. The FXCORR simulator mode of vex2difx now selects the correct reference time for antenna clock
offsets.

5. A work-around for a Streamstor problem has been added that should improve reliability in Mark5
module correlation when a change in bank is needed.

6. The sign of clock offsets in vex files has been reversed to follow the vex standard

7. Jobs are split at leap seconds

8. LBA data formats are handled more correctly in vex2difx

9. The model generator (calcif2) now respects polynomial parameters interval and order given on the
command line.

DiFX 1.5.1 was made available via subversion on Sep 8, 2009.

2.5 DiFX 1.5.2

DiFX 1.5.2 is mostly a bug fix update to version 1.5.1, but with a few new features. This version of DiFX
comes with the following components (and versions): calcif2 (1.1), calcserver (1.2), difx db (1.12; NRAO-
only), difx2fits (2.6.1), difx2profile (0.1), difxio (2.12.1), difxmessage (0.7), mark5access (1.3.3), mk5daemon
(1.2), mpifxcorr (1.5.2), vex2difx (1.0.2), and vis2screen (0.1). The new features include:

1. Support unmodulated VLBA format data with new pseudo-format “VLBN”

2. mpifxcorr now warns when difxmessage is in use so the user knows why no messages appear on the
screen

3. New utility difxcalculator in the difxio package

4. eVLBI support within vex2difx

5. Vastly improved real-time correlation monitoring

10

6. New utility diffDiFX.py to compare two DiFX output files

7. Improved and more consistent error messages (and some of them are now documented!)

8. vex2difx now operates in strict parsing mode by default

9. Additional user feedback to indicate suspicious or bad .polyco and .v2d files

10. calcif2 warns if any NaNs or Infs are produced

11. Clock adjustments are easier now with deltaClock and deltaClockRate parameters in the vex2difx

antenna settings

2.5.1 Bugs fixed

1. Improve timestamp precision (thanks to John Morgan)

2. The vlog program (used at NRAO only, I think) misparsed the pulse cal information in some cases

3. Fixed memory leak in difx2fits when combining a large number of jobs

4. Improved FXCORR simulation mode in vex2difx

5. Mark5 directory reading systematically generates unique names for all scans even when two scans have
the same name

6. Improve reporting of Mark5 errors during playback and change alert severity to be more appropriate

7. Don’t overblank certain Mark4 modes (thanks to Sergei Pogrebenko for the bug report)

8. Vex ‘data valid’ period now properly respected

9. Vex clock table tolerance issue corrected

10. Changes in Mark5 mode should be safer (note that currently vex2difx never exercises multiple modes
in a single job)

11. When making the cross spectrum sniffer plots, respect the reference antenna

12. Improved pulsar polynomial file error checking is performed

13. Amplitude-phase-delay (APD) sniffer plots always have refant first when multiple refants are supplied

14. Project name should now appear on sniffer APD plots

15. Mark5 units now send status information even when no playback is occuring (eliminating the incorrect
LOST state issue as displayed in the DOI)

2.5.2 Known problems

1. Extensive use in VLBA operations has shown that occasional data dropouts of one or more antenna,
sometimes in a quasi-repeatable manner, affect completeness of some jobs. It is not clear exactly what
the cause is at this point, however its cure is a high priority.

2. Loss of a few FFTs of data will occur in rare circumstances.

3. Clock accountability is poor when jobs containing multiple clock models for antennas are combined.

DiFX 1.5.2 was made available via subversion on Jan 20, 2010.

11

2.6 DiFX 1.5.3

DiFX 1.5.3 is mainly intended as a bug fix update to version 1.5.2, though some new features have made
their way into the codebase. This version of DiFX comes with the following components (and versions):
calcif2 (1.3), calcserver (1.3), difx db (1.13; NRAO-only), difx2fits (2.6.2), difx2profile (0.2), difxio (2.12.2),
difxmessage (7.2), mark5access (1.3.4), mk5daemon (1.3), mpifxcorr (1.5.3), vex2difx (1.0.3), and vis2screen
(0.2). Many changes are motivated by issues found running DiFX full time in Socorro.

The new features include:

1. Mark5 directory (.dir) files can contain RT on the top line to indicate the need to play back using
Real-Time mode.

2. difxqueue (NRAO only) now takes an optional parameter specifying the staging area to use.

3. New Mark5 diagnostic programs (vsn and testmod) introduced to wean off the use of the Mark5A

program.

4. mk5daemon can now mount and dismount USB and eSATA disks through mk5commands.

5. mk5cp now makes the destination directory if it doesn’t exist.

6. mk5daemon will now warn if free disk space is getting low.

7. db2vex (NRAO only) now allows field station logs to be provided. As of now, only media VSNs are
extracted.

8. Playback off Mark5 units has been made more robust with better error reporting.

9. New utility m5fold that can be used to look at repeating signals in baseband data total power (e.g.,
switched power)

10. vex2difx now supports job generation in cases where upper side band was observed at one antenna
and lower sideband at another.

2.6.1 Bugs fixed

1. Don’t unnecessarily drop any FFTs of data.

2. Sub-integrations longer than one second could cause integer overflows.

3. Fix bug in vex2difx where jobs were not split at clock breaks.

4. difx2fits was guilty of incorrect clock accoutability after a clock change at a station when merging
multiple jobs. Worked around by not allowing such jobs to merge.

5. db2vex (NRAO only) warns when more than one clock value is found for an antenna.

6. Mark5 unit bank switches now routinely call XLRGetDirectory() to work around a newly discovered
bug in the StreamStor software.

7. A couple possible memory leaks in the mark5access library were fixed (thanks Alexander Neidhardt
and Martin Ettl).

8. Lots of compiler warnings quashed (mostly of the “unused return value” kind).

9. Olaf Wuchnitz found two FITS file writing problems in difx2fits dating back to code inherited from
FXCORR!

12

10. Two more digits are retained for the time and one more digit is retained for amplitude information in
the .apd and .apc sniffer files.

11. Some bugs related to replacement of special characters by “entities” in XML messages are fixed.

12. New traps are in place in many places to catch string overruns.

13. Fix for writing .calc files with more than one ephemeris driven object.

14. vex2difx would get very slow due to constantly sorting a list of events. Now this list is only sorted
when necessary, drastically speeding it up.

15. The RCfreqId parameter in the difxdatastream structure (in difxio) was used with two different mean-
ings that are normally the same. Cases where they differred caused exceptions. Fixed in difxio and
difx2fits. (Thanks to Randall Wayth for leading to the discovery)

16. difx2fits would assign a bogus .jobmatrix filename when not running the sniffer.

17. vex2difx could get caught in an infinite loop when making jobs where two disk modules had zero time
gap.

18. difx2fits used a bad config index when making the puslar GM table when multiple configs were
present.

19. Within mpifxcorr an extra second was added to the validity period for polycos to ensure no gap in
coverage.

20. mk5dir would add correct the date improperly for Mark4 formats after beginning of 2010.

21. Lots of fixes for building FITS files out of a subset of baseband recorded channels.

22. FITS files now support antennas with differing numbers of quantization bits.

23. Lots of Mac OS/X build issues fixed.

DiFX 1.5.3 was released on April 16, 2010.

2.7 DiFX 1.5.4

DiFX 1.5.4 is likely the last 1.5 series formal release of DiFX, though an additional release could be made if
demand is there.

The new features include:

1. difx2fits can now produce FITS files with only a subset of the correlated sub-bands.

2. difx2fits can be instructed to sniff on an arbitrary timescale.

3. The makefits wrapper for difx2fits now respects a -B option for phase bin selection.

4. difxio has improved checking that prevents merging of jobs with incompatible clocks.

5. difxio now maintains a separate clockEpoch parameter for each antenna.

6. difxStartMessage now contains DiFX version to run, allowing queued jobs to be run under different
DiFX versions.

7. The curses utilities mk5mon and cpumon now catch exceptions and can be resized without infecting the
terminals they are run in.

13

8. New sub-library called mark5ipc added that provides a semaphore lock for Mark5 units.

9. The testdifxmessagereceive utility can now filter on message types.

10. Support for SDK9 throughout (e.g., in tt mpifxcorr, mk5daemon, and other utilites).

11. Support for new Mark5 module directory formats (Haystack Mark5 memo 81).

12. Several new Mark5 utilities to make up for Mark5A functionality that will not longer be available:
vsn, testmod, recover, m5erase.

13. mk5cp can now copy data based on byte range.

14. Many programs directly talking to the StreamStor card of Mark5 units use WATCHDOG macros for
improved diagnostics when problems occur.

15. More protection against incomplete polyco files added to mpifxcorr (Note: should add this to vex2difx
as well).

16. The GUI can now spawn different DiFX versions at will through the use of difxVersion parameter in
the DifxStartMessage and wrapper scripts.

17. difx2fits can now convert LSB to USB for matching purposed. When used, all LSB sub-bands must
have corresponding USB sub-bands on one or more other antenna.

18. mark5access-based utilities (e.g., mp5spec) can now read from stdin.

19. New utility mk5cat can send data on a Mark5 module to stdout.

2.7.1 Bugs fixed

1. Only alt-az telescopes received the correct model. Fixed. Note that CALC and FITS-IDI don’t have
a good match between their sets of allowed mount types.

2. difx2fits now properly propagates quantization bits on a per antenna basis.

3. Logic errors in difxio would confuse difx2fits in cases where different antennas use different fre-
quency setups. Fixed.

4. Weights are blanked in difx2fits prior to populating each record, preventing screwy weights for
unused sub-bands.

5. vex2difx would sometimes hang or not converge on job generation. Fixed.

6. vex2difx now doesn’t assume source name is same as vex source def identifier.

7. mpifxcorr generated corrupted weights and amplitudes when post-FFT fringe rotation was done.
Fixed.

2.8 Known bugs

1. Tweak Integration Time feature of vex2difx often does the wrong thing.

DiFX 1.5.4 was released on October 12, 2010.

14

2.9 DiFX 2.0.0

DiFX 2.0.0 is based on an upgraded mpifxcorr that breaks .input file compatibility with the 1.0 series.
This new version will allow more flexible correlation of mis-matched bands and correlation at multiple phase
centers along with general performance improvements. Development of the 2.0 capabilities will occur in
parallel with the 1.0 series features.

2.9.1 New features

1. Pulse cal extraction in mpifxcorr.

2. Massive multi-phase center capabilitiy.

3. New utitility zerocorr added.

4. External pulse cal extraction utility m5pcal added.

5. DiFX output format is all-binary, meaning speed and disk savings

2.10 Known bugs

1. Zoom band support has multiple problems.

DiFX 2.0.0 was released on October 12, 2010.

2.11 DiFX 2.0.1

DiFX 2.0.1 is a bug fix and clean-up version in response to numerous improvements to DiFX 2.0.0. There
are a number of new features as well.

2.11.1 New features

1. New utility checkmpifxcorr to validate DiFX input files

2. Switched power detection in mpifxcorr

3. Early multi-thread VDIF format support

4. RedHat RPM file generation for some packages (can extend to others on request)

5. Improvements to method of selecting which pulse cal tones get propagated to FITS

6. Initial complex sampling support

7. Improved locking mechanism for direct mark5 access (using IPC semaphores; difxmessage)

2.11.2 Bug fixes

1. Fix model accountability bug in difx2fits when combining jobs

2. Numerous fixes for zoom bands (in mpifxcorr, vex2difx & difx2fits)

3. Native Mark5 has improved stability for cranky modules

4. Numerous fixes for DiFX-based phase cal extraction (mostly in difx2fits, mostly for multi-job)

5. Fractional bit correction for a portion of lower sideband data got broken in difx 2.0.0. Fixed.

6. Migrate difxcalculator to DiFX 2; was not complete for DiFX 2.0.0

DiFX 2.0.1 was released on June 24, 2011.

15

2.12 DiFX 2.1

2.12.1 New features

1. Mark5-based correlation: easy access to S.M.A.R.T. data (can be viewed with getsmart)

2. Mark5-based correlation: emit multicast message containing drive statistics after each scan

3. VSIS interface added to mk5daemon

4. Support for non power-of-2 FFT lengths

5. New utilities: mk5map (limited functionality), fileto5c, record5c

6. Remote running of vex2difx from mk5daemon

7. Multithread VDIF support enabled for the data sources FILE and MODULE, including stripping of
non-VDIF packets

8. New features added to existing utilities:

• mk5cp: copy without reference to a module directory

• mk5cp: ability to send data over ssh connection

• vsn: get SMART data from disk drives

9. e-Control source code analysis (Martin Ettl, Wettzell)

10. Restart of correlation is now possible

11. difx2fits: -0 option to write minimal number of visibilities to FITS

12. difx2fits: write new RAOBS, DECOBS columns in source table

13. tweakIntTime option to vex2difx has been re-enabled

14. diffDiFX.py can now cope with two files that don’t have exactly the same visibilities (i.e., some
visibilities are missing from one file)

15. plotDiFX.py and plotDynamicSpectrum.py now have better plotting and more options

16. New FAKE datastream type for performance testing

17. Espresso, a lightweight system for managing disk-based correlation, has been added to the DiFX
repository.

18. Option to correlate only one polarization has been added.

19. mk5dir can now produce .dir file information for VDIF formatted data.

20. Add NRAO’s sniffer plotters to the repository.

16

2.12.2 Bug fixes

1. LBA format data now scaled roughly correctly (removing the need for large ACCOR corrections).

2. There was a bug when xmaclength was > nfftchan for pulsar processing. This has been corrected.

3. guardns was incorrectly (overzealously) calculated in mpifxcorr.

4. Mk5DataStream::calculateControlParams: bufferindex>=bufferbytes bug fixed.

5. Low weight reads could result in uninitialized memory; fixed.

6. Streamstor XLRRead() bug work-around installed several places (read at position 0 before reading at
position > 0). This is thought not to be needed with Conduant SDK 9.2 but the work-around has no
performance impact.

7. Fix to pulse calibration data ordering for LSB or reordered channels.

8. Pulse cal amplitude now divided by pulse cal averaging time in seconds.

9. Pulse cal system would cause crash if no tones in narrow channel. Fixed.

10. Zoom band support across mixed bandwidths (see caveat below).

11. Fix for spurious weights at end of jobs (untested. . .)

12. Mixed 1 and 2 bit data are handled more cleanly

13. mpifxcorr terminates correctly for all short jobs. Previously it hung for jobs with a number of subints
between nCores and 4× nCores

14. Correctly scale cross-correlation amplitudes for pulsar binning when using TSYS > 0 (accounts for
varying number of samples per bin c.f. nominal)

15. Lower side-band pulse cal tones had sign error. Fixed.

DiFX 2.1 was released on May 25, 2012.

2.13 DiFX 2.1.1

DiFX 2.1.1 was a minor patch release to fix a scaling issue with autocorrelations of LBA-format data in
mpifxcorr.

DiFX 2.1.1 was committed as a patch to DiFX 2.1 on June 7, 2012.

2.14 DiFX 2.2

2.14.1 New features

1. calcif2: ability to estimate delay polynomial interpolarion errors

2. Support for a “label” identifier for a local version of DiFX that will help discriminate exact version
used.

3. Faster Mark5 directory reading

4. Faster VDIF corner turning through customized bit shifting functions

5. mpifxcorr can now be built without Intel Integrated Performance Primitives, though resulting in a
slower correlator.

17

6. vdifio: several new VDIF manipulation and processing utilities added: vmux, vsum, vdifd, vdifspec,
vdiffold, vdifbstate

7. difxbuild: a new installation program

8. difxspeed: a program to benchmark and help optimize DiFX

2.14.2 Bug fixes

1. Mutex locking bugfix for very short jobs

2. Prevent MODE errors when a datastream runs out of data well before the end of a job

3. calcif2: fix azimuth polynomial generation in case of wrap

4. Fix for FITS file generation for mixed sideband correlation

5. difx2fits now uses appropriate gain tables for S and X band in S/X experiments (Thanks to James
Miller-Jones for reporting)

6. difx2fits: correct pcal, weather, tsys and flag data for observations crossing new year

7. Fixed scaling of autocorrelations for LBA format data

8. 0.5 ns wobble in delays for 2 Gbps Mark5B data fixed

9. Fix bug preventing subintegrations longer than 1 second. Now 2 seconds is allowed (this limit comes
from signed integer number of nanoseconds).

10. Weights corrected in cases where two setups differening only by pcal setup were correlated against each
other

11. Quashed data and weight echos that would occur for about 1 integration at the beginning of each scan
for datstreams that ran out of data before end of job.

12. The multicast (diagnostic) weights were low or zero in case of frequency selection (zoom band or freqId
selection). Fixed.

13. mark5access: fix (non)blocking issue when receiving data from stdin

DiFX 2.2 was released on June 12, 2013.

2.15 DiFX 2.3

2.15.1 New features

1. mpifxcorr: LO offsets are now corrected in the time domain when fringe rotation is also done in the
time domain (the usual mode), allowing considerably larger LO offsets without decorrelation

2. mpifxcorr: Working polarization dependent delay and phase offsets

3. mpifxcorr: Experimental linear2circular conversion

4. mpifxcorr: Complex Double sideband (RDBE/Xcube) sampling support (Note: things are not perfect
here; wait for 2.4 for real use)

5. mpifxcorr: new file/Mark5 based VDIF/Mark5b datastream (faster and more robust)

6. mpifxcorr: implement work-around for buggy kernel-driver combinations; Mark5 read sizes ¿20 MB
now allowed

18

7. utilities: some new command line tools for Mark5B and VDIF files (vsum, mk5bsum, vmux, mk5bfix)

8. new options for passing calibration (Walter B: memo forthcoming)

9. Hops updated to version 3.9

2.15.2 Bug fixes

1. mpifxcorr: Datasteam buffer send size now calculated correctly for complex sampled data

2. mpifxcorr: Avoid very rare bug where combination of geometric delay and data commencing mid-subint
meant one invalid FFT might be computed

3. mpifxcorr: multicast weights are now computed correctly for mixed-sideband correlation

4. mpifxcorr: fixed bug where some autocorrelations were not saved in a mixed-sideband correlation

5. mpifxcorr: fixed bug where send size could be computed incorrectly by 1-2 bytes for

6. Mark4/VLBA/Mark5B/VDIF formats, potentially resulting in very small amounts of data loss

DiFX 2.3 was released on January 18, 2014.

2.16 DiFX 2.4

2.16.1 New Features

1. mpifxcorr

• Support a FAKE correlation mode for multi-threaded VDIF.

• The mpifxcorr produced PCAL files have had a format change that allows unambiguous interpre-
tation across all use cases.

• Add network support (TCP, UDP and Raw Ethernet) for multi-threaded VDIF: 1. TCP and UDP
variants not tested yet; 2. raw Ethernet variant is used for the VLITE project.

• Support updated Mark5 module directories.

• Better checking that Mark5 data being processed matches what is expected.

• Improved Mark5B decoding: 1. Mark5B data streams are now filtered for extra or missing data;
2. packets with invalid bit (actually the TVG bit) set replace missing data; 3. this means any
valid Mark5B data with the TVG bit set will not correlate.

• Information about each Mark5 unit used in “native mode” is emitted at start of jobs so it can be
logged.

• Ultra-low frame rate VDIF data was affected by allowing a long “sort window” in the VDIF
multiplexer. This has been reduced to 32 frames and seems to work fine for all bandwidths now.

2. difx2fits

• Slightly improved compliance with the FITS-IDI convention: 1. invalid Tsys values become NaN,
not 999; 2. populate DELTAT keyword in ModelComps table.

3. difxio

• Support for X/Y polarization correlation. Many fundamental issues with linear polarization
remain though: 1. this does not support in a meaningful way Linear*Circular correlations; 2.
there is a terminology gap in many bits of software and file formats that confuses X/Y with H/V
polarization bases; 3. the intent of this support is for short baselines (VLITE).

19

4. mark5access

• Support for “d2k” mode in Mark5B format (swapped sign and mag bits).

• fixmark5b() function fixed for case that fill pattern is seen at the 1 second transition.

• Make use of the TVG bit as an “invalid frame” indicator for Mark5B data.

• m5bstate: support complex sampled data

5. mk5daemon

• New utility mk5putdir: reads a binary file and replaces a Mark5 directory with it.

• mk5dir: when reading the directories, saves a copy of the binary representation in case it is needed
later (perhaps via mk5putdir)

• Reworked mark5 module directory support, including support for many new variants of the di-
rectory format.

• mk5erase will save a “conditioning report” to $MARK5 CONDITION PATH if that environment vari-
able is set.

6. vdifio

• Fairly large change to the API. Please read the ChangeLog for details.

7. vex2difx

• Respect the record enable bit in the SCHED block. If that value is 0 no correlation will be
attempted for that antenna.

• Bug fixes preventing some LSB/zoom bands from being correlated.

• Complex data type and number of bits are now read from vex file.

2.16.2 Bug fixes

1. A “jitter” of 0.5 ns when using 2Gbps Mark5B format was fixed. A fix was back-ported to DiFX 2.3.

2. A similar jitter was corrected for high frame rate VDIF (problem identified by the VLITE project)

3. Fix case of intermittant fringes that was due to incorrect assumption about the sizeof(unsigned long):
32 bits on a 32-bit system vs. 64 bits on a 64-bit system. Some other variable types were changed for
long term type safety

4. Fix off-by-one in correlation using LSB and zoom bands together.

2.17 DiFX 2.5.1

2.17.1 New features

1. Innitial support for correlating Mark6. This is still much a work in progress.

2. Multiple datastreams per antenna supported via vex2difx

3. New delay model program: difxcalc11.? No longer requires calcserver.

4. Support for more than 6 days of EOP values.

5. “Union mode” in difx2fits allows merging of correlation output that uses different setups. Some re-
strictions apply. Designed for GMVA and RadioAstron use.

20

6. Improved VDIF support: wider range of bits/threads, support for multi-channel, multi-thread VDIF,
support for complex multi-thread VDIF

7. Support for new VDIF Extended Data Version 4 which is useful for multiplexed VDIF data. See:
http://vlbi.org/vdif/docs/edv4description.pdf

8. Python bindings for vdifio and mark5access

9. mpifxcorr: per-thread weights implemented

10. Automatic selection of arraystride by mpifxcorr if set to zero; this is done per-datastream.? Very useful
for correlation of ALMA data or others with non-standard sample rates.

11. Automatic selection of xmacstride by mpifxcorr if set to zero

12. Automatic selection of guardns by mpifxcorr if set to zero

13. mpifxcorr can now operate with unicast messages instead of multicast. Useful in some situations where
multicast is not supported.

14. New “dirlist” module/file directory listing format.

15. mk5cp append mode to resume interrupted copy

16. ALMA support in HOPS: non-power-of-two FFTs, up to 64 freq. channels, full linear/circular/mixed
polarization support

17. HOPS improvemetns for VGOS through improved manual phase cal support

18. New package: polconvert. Used to post-correlation convert from linear to circular polariations

19. New package: autozoom. Helps a user develop .v2d file content when setting up complicated zoom
band configurations.

20. New package: datasim: generate baseband data suitable for simulated correlation

21. Improved error reporting in many places

2.17.2 Bug fixes

1. fix for incorrect reporting of memory use by mpifxcorr (needed longer int sizes)

2. dataweights would sometimes be incorrect after abrupt ending of data from a datastream.

3. FITS-IDI files produced by difx2fits more standards compliant; fix problem that caused AIPS task
VBGLU to fail.

4. Several segfaults across a number of programs/utils now are caught and provide useful feedback.

2.17.3 Caveats

1. Various changes made between DiFX 2.4 and 2.5 are not API-compatible. Please don’t mix packages
from these two releases. If you have non-DiFX software that links against the DiFX libraries, be sure
to recompile them. A small number of changes may result in need to restructure such code.

2. Unlike previous DiFX releases, each tagged version will be its own SVN copy. If the number of minor
releases within the 2.5 series gets large, some (reversible) pruning of the SVN repository may occur.
There has been some debate about the best tagging strategy: bring any strong opinions to the Bologna
meeting, where further changes to release and tagging policies can be discussed if needed.

21

http://vlbi.org/vdif/docs/edv4description.pdf

2.18 DiFX 2.5.2

2.18.1 Bug fixes

1. Fixes for the HOPS ’rootid’ rollover. The new rootcode is a conventional base-36 timestamp in seconds
from the start of the new epoch (zzzzzz in the old epoch). This will last until 2087.

2. Major fixes/improvements to PolConvert for use with ALMA by the EHTC and GMVA.

2.19 DiFX 2.5.3

2.19.1 Updates

1. genmachines

• r8264 genmachines and mark6 datastream updates

• r8357 add mark6 activity message to mark6 datastream

• r8409 allow multiple nodes to serve as datastream nodes for FILE based-data in the same location

2. hops 3.19 new features

• increased the number of allowed frequency “notches” to ridiculous levels

• an ad hoc data flagging capability to allow improved time / channel data selection for fringing

• a capability to dump all the information on the fringe plots into ascii files for roll your own plotting

• removed obsolete max parity

• introduced min weight (to discard APs with very little correlated data in support)

• vex2xml, a program that converts VEX (v1.5) into XML to allow easy parsing via standard XML
parsers.

• added type 222 to save control file contents, enabled by keyword gen cf record.

polconvert to v1.7.5 (mostly minor bug fixes and robustifications)

DiFX 2.5.3 was released on March 28, 2019.

2.20 DiFX 2.5.4

2.20.1 New features

1. HOPS updated to 3.22

2. Vex2difx and difxio

• permit H and V polarization labels (but need trunk difx2fits if these are to be propagated into
enhanced FITS-IDI)

• support the v2d parameter ’exhaustiveAutocorrs’

• support Mark6 MSNs i.e. MSNs that contain ’%’

3. Difx2mark4

• support PCal data from multi-datastream correlation

• option ’-e expt nr’ additionally propagates the experiment number into the generated root files

• backported the options -w for mixed-bandwidth data, and -g for filtering freq groups

4. Genmachines updated to support Mark6 host auto-detection

5. Includes copies of more recent utilities: packHops.py, distFourfit.py, fplot2pdf, plotResiduals.py

22

2.20.2 Bug fixes

1. Mark6 native playback fixed to support other than VLBA VDIF recording

2. Vdifio

• fix excessively long station name printout in printVDIFheader

• fix to mk6gather to not crop a scan

• resync code extended with further VDIF frame sizes that are common in VGOS

3. Mpifxcorr fix for complex data (VDIFC) PCal extraction for bands with other than 16 tones

4. Mpifxcorr fix for IVS-related 5/10MHz pcal issue specific to those channels where first pcal is at
baseband 2.01 MHz

5. Difx2mark4

• fix count of total bands and polarizations for multi datastream datasets, solving an issue in HOPS
post-processing

• fix parallactic angle calculation error in first t303 record

• fix to permit Tab characters in VEX

6. Mpifxcorr no longer segfaults after “exiting gracefully” message upon missing data files

7. Tkinter add-on package renamed from tkinter to kinter difx to avoid name collision

8. Install-difx now works under Python 3 and supports the option withmark6meta

9. Startdifx no longer piles up difxlog processes

2.20.3 Caveats

Support for Complex VDIF is incomplete in 2.5.3 and 2.5.4, both treat Complex VDIF LSB as USB data.
This handling was retained in 2.5.4 for VGOS compatibility reasons in order to have all-LSB(-mislabeled)
data products, and avoid postprocessing issues with mixed USB and LSB data products. One should not
correlate any actual Complex VDIF LSB recordings - this produces no fringes. The issue affects only VDIFC
(complex VDIF), not VDIF nor other formats.

DiFX 2.5.4 was released on August 27, 2021.

2.21 DiFX 2.5.5

2.21.1 New features

1. genmachines extended to support Mark6 with multiple expansion chassis

2. update polconvert scripts

2.21.2 Bug fixes

1. genmachines fix to support December i.e. doy 335 and later

2. vex2difx

• fix freqClockOffs and loOffsets parameters to not expect more values than recorded frequencies

• removed obsolete warning about 10 MHz PCal not being supported

DiFX 2.5.5 was released on October 24, 2022.

23

2.22 DiFX 2.6.1

2.22.1 New features

1. Improved VDIF support

• Increased robustness in processing VDIF data with many gaps

• Improvements in processing VDIF with frame sizes very different from 5000 bytes

• New in-line reordering functionality via vdifreader() functions; allows operation on more highly
skewed VDIF files

2. mpifxcorr .input, .calc, .threads, and pulsar files are now only read by the head node

3. mpifxcorr can be provided a new stop time via a DifxParameter message; results in clean shutdown at
that time.

4. mpifxcorr can extract pulse cals with tone spacing smaller than 1 MHz

5. Support for Intel Performance Primitives version ¿ 9 (specfically IPP 2018 and 2019)

• These newer IPP versions are more readily available than earlier versions

6. Improved support for Mark6 playback

• Mark6 activity messages in difxmessage

• Support in genmachines with updated mk5daemon

• Support playback of Mark5B data on Mark6

• New and improved mark6 utilities

7. difx2fits: populate antenna diameters and mount types for antennas known to the difxio antenna
database

8. difx2fits: in verbose mode, explain why files are being split

9. difx2fits: new options for merging correlator jobs run with different clock models

10. vex2difx: new parameter exhaustiveAutocorrs can be used to generate cross-hand autocorrelations
even when the two polarizations for an antenna come from different datastreams

11. difx2mark4: support multiple bandwidths in one pass

12. hops: to rev 3.19 (see notes on 2.5.3 above for details on several new and useful features)

13. polconvert: to rev 1.7.5 (see notes on 2.5.3 above for details)

2.22.2 Bug fixes

1. mpifxcorr: Retry on NFS open errors of kind: “EAGAIN Resource temporarily unavailable”

2. mpifxcorr: Fix weight issue when the parameter nBufferedFFTs > 1

3. startdifx/genmachines: Fixes for cases when multiple input files are provided

4. Python 2 scripts now explicitly call python2

5. vex2difx: allow up to 32 IFs (was 4) and warn when this is exceeded

6. vex2difx: support units in the clock rate (e.g., usec/sec); in general support time in the numerators.

7. Sun RPC is on its way out; support for “tirpc” added to calcif2 and calcserver

24

2.22.3 Caveats

1. Moved mark6gather functions from vdifio to mark6sg; this changes the order of dependencies!

2. Various changes made between DiFX 2.5 and 2.6 are not API-compatible. Please don’t mix packages
from these two releases. If you have non-DiFX software that links against the DiFX libraries, be sure
to recompile them. A small number of changes may result in need to restructure such code.

3. There is some suspicion that correlation of very narrow bandwidth VDIF modes on Mark6 media can
result in premature termination of datastreams.

4. The .threads file must now exist; previously (before the change to only have manager read these files),
a missing .threads file would cause each core process instance to have a single thread.

5. difx monitor won’t compile with IPP ≥ 9

DiFX 2.6.1 was released on August 28, 2019.

2.23 DiFX 2.6.2

2.23.1 New features

1. Python parseDiFX package added

2.23.2 Updates

1. HOPS updated to version 3.21

2. PolConvert updated to version 1.7.8

3. Former FTP access to CDDIS servers changed to FTP-SSL (geteop.pl)

2.23.3 Bug fixes

1. mpifxcorr: Fix correlation of Complex LSB data, restore fringes. Note: DiFX 2.5.x and 2.6.1 treated
Complex LSB as if Complex USB, while Trunk prior to r9647 05aug2020 treated LSB nearly correctly
except for a off-by-one channel bug

2. difx2mark4: Fix seg-fault in createType3s.c when a station has only a single entry in the PCAL file

3. difx2mark4: Remove unneeded debugging statement (calling d2m4 pcal dump record())

4. difx2mark4: Update createType3s.c to add support for DiFX PCAL files generated from station data
where each data-stream thread resides in a separate file (multi-datastream support). This separates
the code reading the PCAL files from the code filling the type-3 records so that tone records from
multiple data streams can be merged before populating the type-309s

5. difx2mark4: Update createType3s.c to remove support for DiFX version-0 PCAL files

6. difx2mark4: Add support for 10 MHz p-cal tone spacing (needed by VGOS at Yebes)

7. difx2mark4: Significantly increase hardcoded array sizes (difx2mark4.h: NVRMAX 8M, MAX FPPAIRS
10k, MAX DFRQ 800) as required for EHT2018

8. difx2mark4: Fix a bounds check, permit tabs in VEX file

9. difx2fits: Fix FITS PH table having missing or superfluous pcal records when one correlates multi-
datastream antennas, or not all recorded frequencies, or multiple zooms per recorded frequency

25

10. mark6gather: Fix poor weights in native Mark6 correlation for VDIF frame sizes not equal to 5032
bytes

11. difxio: Fix PCal tone frequency rounding bug on some platforms

12. difxio: Cope with recorded bands that lack PCal tones, e.g., 200 MHz PCal spacing of KVN with say
32 MHz recorded bands

13. calc11: Dave Gordon provided ocean loading params at EHT stations

14. calc11: Increased the number of field rows supported in .calc files

15. vex2difx: Fix internal merge of SamplingType (real, complex) when info found in VEX and/or v2d file

16. Minor changes to oms2v2d and vexpeek

17. More IPP versions supported

18. Minor issues with vis2screen fixed

19. Fixed build failure with gcc defaults

20. Python3 support in many/most places

2.23.4 Caveats

1. difx2mark4: Some LSB-LSB baselines do not get converted in mixed-sideband correlation setups (DiFX
2.6.1, 2.6.2); if affected, use difx2mark4 2.5.3 with override-version. A bugfix is pending for DiFX 2.6.3
later this year.

2. difx2mark4: Performance regression with p-cal files, conversion of p-cal data may take noticeably longer
than before

3. calcserver and difxcalc11: With the latest versions of gfortran (10.1 or newer) you will need to un-
comment the line with -fallow-argument-mismatch line in the environment setup in order to compile.
Users who do this should be alert to possible issues.

DiFX 2.6.2 was released on September 11, 2020.

2.24 DiFX 2.6.3

This version has never been officially released.

2.25 DiFX 2.7.1

This version has never been officially released. The 2.7 series was used by the Event Horizon Telescope. The
2.7 series is a feature branch derived from DiFX 2.6.2 with support added for outputbands.

2.26 DiFX 2.8.1

The DiFX 2.8 series collected updates and fixes from many DiFX users and is the first version universally
usable on VGOS, EHT, and “traditional” VLBI data. Because the 2.7 series was never formally released,
the notes below include all changes since the 2.6 series.

26

2.26.1 New features

1. Support for appending contiguous subbands together to create outputbands

2. Initial support for vex2

3. Complete conversion to Python 3

4. Support for CODIF format

5. mark5access programs: error output to stderr to allow piping

6. Support for IPP 2019 series

7. Experimental support for Vienna Mapping Functions in calcif2

8. Some features (within mpifxcorr and vex2difx) that provide additional options for real-time correlation

9. Espresso modification to work with singularity (or docker) image

2.26.2 Updates

1. HOPS updated to version 3.24

2. PolConvert updated to version 2.0.3

3. Several new VDIF decoders and corner turners introduced to widen range of support

4. Improved support for more than 2 bits per sample (see https://library.nrao.edu/public/memos/

vlba/up/VLBASU_52.pdf)

5. Mark6: support for larger number of expansion units

6. Add a few more stations to ocean loading tables within difxcalc

7. Several new options in the tabulatedelays program

8. difxio programs (e.g., vex2difx and difx2fits) can support project codes up to 24 characters long (was
7)

2.26.3 Bug fixes

1. difx2mark4: fix a parallactic angle calculation bug

2. vdifmux() function had some logic errors causing bad performance in gappy data; fixed.

3. In subarray cases difx2fits could provide incorrect pulse cal values; fixed.

4. mark5access bug fix to prevent crash

5. mpifxcorr: fix bug affecting data weights when nBufferedFFTs > 1 and datastreams weight < 1

6. mpifxcorr could end early due to bug in receiving a DifxParameter message; fixed.

7. some of the vdif python utilities (e.g., vdifd) had errors in parsing the command line: nbit and offset
were swapped

27

https://library.nrao.edu/public/memos/vlba/up/VLBASU_52.pdf
https://library.nrao.edu/public/memos/vlba/up/VLBASU_52.pdf

2.26.4 Caveats

1. Outputbands support can only work on one frequency setup at a time.

2. The DiFX-2.8 series may be the last to support Mark5 recordings.

Many additional non-user-visible improvements were made to the code as well as many small user-visible
improvements that do not warrant specific mention. The Changelog files that are packaged with most of the
DiFX software modules contain more detailed lists of code changes. DiFX 2.8.1 was released on XXX 2023.
A wide array of testing has been done and this version is considered ready to be adopted by all DiFX users.

3 Features left to implement

Here is a list of other features to add to DiFX that are not directly tied to any particular version:

1. Support for K5 format

2. Pulsar bins with proper output format

3. Space VLBI support

3.1 DiFX and AIPS

Only one task in AIPS, FITLD, has to deal with the telescope/correlator specific aspect of the FITS-IDI files
that the VLBA correlator and DiFX generate. The FITS-IDI variant of FITS was first documented in AIPS
Memo 102 [3], and more recently in AIPS Memo 114 [4], which will be generally available shortly. It has
been modified for better support support of DiFX FITS output. In general, these changes make FITLD less
telescope specific so the resulting FITS-IDI files from any DiFX installation should be highly compatible
with AIPS. Several changes have been made to the 31DEC08 AIPS as a result of DiFX testing:

1. Correction for digital saturation in auto-correlations is disabled for DiFX FITS files. See [7] for some
details on this correction which is not needed for DiFX data.

2. Support for FITS-IDI files greater than 2 GiB in size.

3. Weather table was not populated properly.

4. FITS files with multiple UV tables would generate incomplete GEODELAY columns in CL tables (not
relevant to DiFX).

It is recommended that your AIPS installation be kept up to date.
With the following exceptions, data reduction of DiFX correlated data should be identical to that of

VLBA hardware correlator data. This includes the continued use of DIGICOR=1 in FITLD and the use of
ACCOR as you would have for the hardware correlator. The exceptions are:

1. Use of FXPOL to correct data ordering in the case of half polar (e.g., RR and LL products) is no longer
needed.

2. Use of VBGLU to concatenate data sets in the case of 512 Mbps observations is no longer needed.

3. Data is usually combined into a single FITS-IDI file with proper calibration data attached, usually
implying that TBMRG is not needed to properly concattenate calibration data. This makes DiFX FITS-
IDI data similar to the pipeline-processed VLBA data that was made available to users of the hardware
correlator with the difference being that the original FITS-IDI format is retained, keeping file sizes
typically 25% smaller.

These changes should make data processing easier in almost all circumstances.

28

4 DiFX and pulsars

DiFX supports four pulsar processing modes:

• Binary Gating A simple on-off pulse accumulation window can be specified with an “on” phase and
an “off” phase. This can be used to boost the signal to noise ratio of pulsar observations by a factor
of typically 3 to 6 and can also be used to search for off-pulse emission.

• Matched-filter Gating If the pulse profile at the observation frequency is well understood and the
pulse phase is very well predicted by the provided pulse ephemeris, additional signal to noise over
binary gating can be attained by appropriately scaling correlation coefficients as a function of pulse
phase. Depending on the pulse shape, addition gains by a factor of up to 1.5 in sensitivity over binary
gating are realizable.

• Pulsar Binning Pulsar binning is supported within DiFX. This entails generating a separate visibility
spectrum for each requested range of pulse phase. There are no explicit limits to the number of pulse
phase bins that are supported, however, data rates can become increasingly large. Currently AIPS
does not support databases with multiple phase bins. Until there is proper post-processing support for
pulsar binning, a separate FITS file will be produced for each pulsar phase bin.

• Profile Mode Profile mode is very different than the other three as it generates autocorrelations only
that are used to determine the pulse shape and phase rather than generating cross correlations. This
mode is enabled by placing mode=profile in the global scope of the .v2d file (conventionally near the
top). The .v2d file can enable as many antennas as desired (they will be averaged, so if you have a
single large antenna it is probably best to include only that one), but can only operate on one source
at a time. The output of mpifxcorr can be turned into an ASCII profile with difx2profile. This
profile can then be given to profile2binconfig.py to generate the .binconfig file that is used by
the other three pulsar modes. There is some evidence that after about 10 minutes of integration the
signal to noise ratio of the resultant profile stops growing. This remains to be fully understood. It
could be that increasing the integration time helps; there is no reason not to use quite large integration
times in this mode.

In all cases the observer will be responsible for providing a pulsar spin ephemeris, and in all cases this
ephemeris must provide an accurate description of the pulsar’s rotation over the observation duration (the
pulsar phase must ont drift substantially with time). If gating is to be applied then the ephemeris must be
additionally be capable of pedicting the absolute rotation phase of the pulsar. Enabling pulsar modes incurs
a minimum correlation-time penalty of about 50%. High output data rates (computed from time resolution,
number of spectral channels, and number of pulsar bins) may require greater correlator resourse allocations.
The details of pulsar observing, including practical details of using the pulsar modes and limitations imposed
by operations, are documented at http://library.nrao.edu/public/memos/vlba/up/VLBASU_32v2.pdf.

4.1 Pulse ephemeris

The use of any pulsar mode requires a pulse ephemeris to be provided by the astronomer. This is a table of one
or more polynomial entries, each of which evaluates the pulsar’s rotation phase over an interval of typically a
few hours. The classic pulsar program Tempo can be used to produce the polynomials required [8]. The pulse
phase must be evaluated at the Earth center which is usually specified in tempo by station code 0 (zero).
Many pulsars exhibit a great degree of timing noise and hence the prediction of absolute pulse phase may
require updated timing observations. When submitting the polynomial for use at the VLBA correlator, please
adhere to the following naming convention: experiment-pulsar.polyco , e.g., BB118A-B0950+08.polyco .
Instructions for generating the polynomial file are beyond the scope of this document.

Each .polyco contains one or more polynomials along with metadata; an example .polyco file that is
known to work with DiFX is shown immediately below:

29

http://library.nrao.edu/public/memos/vlba/up/VLBASU_32v2.pdf

1913+16 6-MAY-15 90748.00 57148.38041666690 168.742789 -0.722 -6.720

6095250832.610975 16.940537786201 0 30 15 1408.000 0.7785 3.0960

0.18914380470191894D-06 0.26835472311898462D+00 -0.10670985785738883D-02

-0.85567503020416261D-05 -0.55633960226391698D-07 -0.37190642692987219D-09

-0.58920583351397697D-12 -0.27311855964499407D-12 -0.21723579215912174D-13

0.11968684344685061D-14 0.92517174535020731D-16 -0.28179552068141251D-17

-0.18403230317431974D-18 0.25241984130137833D-20 0.13743173681516959D-21

A description of the file format is available at http://tempo.sourceforge.net/ref_man_sections/tz-polyco.
txt. Currently tempo (version 1) is well supported and tempo2 is only supported in tempo1 compatibility
mode. Eventual support for the tempo2 predictors will be added. All ephemerides must be made for the
virtual Earth Center observatory (i.e., XYZ coordinates 0,0,0, usually observatory code 0; DiFX versions
prior to 2.5 would not accept any non-numeric code even though they are legal). Any reference frequency
can be specified as the correlator takes dispersion into consideration.

Note that although tempo version 2 can produce usable .polyco files experience has shown that version
1 has fewer failure modes.

4.2 Bin configuration file

All three pulsar modes also require the preparation of a .binconfig file by the astronomer. The contents of
this file determine which of the three pulsar modes is being used. Three pieces of information are contained
within this file: the pulsar ephemeris (polyco) files to apply, definitions of the pulsar bins, and a boolean
flag that determines whether the bins are weighted and added within the correlator. The file consists of a
set of keywords (including a colon at the end) that must be space padded to fill the first 20 columns of the
file and the values to assign to these keywords that start at column 21. The file is case sensitive. The pulsar
bins each consist of a ending phase and a weight; each bin is implicitly assumed to start when the previous
ends and the first bin starts at the end phase of the last. The phases are represented by a value between 0
and 1 and each successive bin must have a larger ending phase than the previous. Examples for each of the
three pulsar modes are shown below:

4.2.1 Binary gating

NUM POLYCO FILES: 1

POLYCO FILE 0: BB118A-B0950+08.polyco

NUM PULSAR BINS: 2

SCRUNCH OUTPUT: TRUE

BIN PHASE END 0: 0.030000

BIN WEIGHT 0: 1.0

BIN PHASE END 1: 0.990000

BIN WEIGHT 1: 0.0

4.2.2 Matched-filter gating

NUM POLYCO FILES: 1

POLYCO FILE 0: BB118A-B0950+08.polyco

NUM PULSAR BINS: 6

SCRUNCH OUTPUT: TRUE

BIN PHASE END 0: 0.010000

BIN WEIGHT 0: 1.0

BIN PHASE END 1: 0.030000

BIN WEIGHT 1: 0.62

BIN PHASE END 2: 0.050000

BIN WEIGHT 2: 0.21

30

http://tempo.sourceforge.net/ref_man_sections/tz-polyco.txt
http://tempo.sourceforge.net/ref_man_sections/tz-polyco.txt

BIN PHASE END 3: 0.950000

BIN WEIGHT 3: 0.0

BIN PHASE END 4: 0.970000

BIN WEIGHT 4: 0.12

BIN PHASE END 5: 0.990000

BIN WEIGHT 5: 0.34

Note here that there is zero weight given to pulse phases ranging between 0.05 and 0.95.

4.2.3 Pulsar binning

NUM POLYCO FILES: 1

POLYCO FILE 0: BB118A-B0950+08.polyco

NUM PULSAR BINS: 20

SCRUNCH OUTPUT: FALSE

BIN PHASE END 0: 0.025000

BIN WEIGHT 0: 1.0

BIN PHASE END 1: 0.075000

BIN WEIGHT 1: 1.0

BIN PHASE END 2: 0.125000

BIN WEIGHT 2: 1.0

BIN PHASE END 3: 0.175000

BIN WEIGHT 3: 1.0

.

.

.

BIN PHASE END 18: 0.925000

BIN WEIGHT 18: 1.0

BIN PHASE END 19: 0.975000

BIN WEIGHT 19: 1.0

The primary difference is SCRUNCH OUTPUT: FALSE which causes each pulsar bin to be written to disk.

4.3 Preparing correlator jobs

When using vex2difx to prepare correlator jobs, one must associate the pulsar with a setup of its own that
includes reference to the .binconfig file. An excerpt from a .v2d file is below:

SETUP gateB0950+08

{

tInt = 2.000

nChan = 32

doPolar = True

binConfig = BB118A-B0950+08.binconfig

}

RULE B0950+08

{

source = B0950+08

setup = gateB0950+08

}

The .binconfig file should be in the same path as the .v2d file when running vex2difx.

31

4.4 Making FITS files

For the two gating modes, preparing FITS files with difx2fits is no different than for any other DiFX
output. FITS-IDI does not support multiple phase bins so the pulsar binning case is different and the
situation is non-optimal. Each pulsar bin must be made into its own FITS file with a separate execution of
difx2fits. The -B (or --bin) command line option takes the bin number (starting at zero as above) and
writes a FITS file containing data only associated with that bin number. Be sure to systematically name
output files such that the bin number is understood.

5 Conventions

5.1 Clock offsets and rates

The clock offset (and its first derivative with respect to time, the clock rate) are stored in a number of places
through the correlator toolchain. The convention used by vex is that the clock offset is positive if the Data
Acquisition System (DAS) time tick is early (i.e., the station clock is running fast) and accordingly the full
name in the vex file is clock early. In all other parts of the system the opposite sign convention is used, that
is the clock offset is how late (slow) the DAS clock is. In particular, all VLBA correlator job files, the VLBA
database, the DiFX .input file and FITS formatted output files all use the “late” clock convention. Note
in particular that the clockOffset and clockRate parameters of the ANTENNA sections in the .v2d files use
the “late” convention, not vex’s “early” convention.

5.2 Geometric delays and rates

The delays used to align datastreams before correlation are nominally produced by the Goddard CALC
package. The calculations are done on an antenna basis using the Earth center for antenna A and the
requested station for antenna B and thus results in a negative delay for sources above the horizon. The
core of DiFX uses the opposite convention and thus the delays and their time derivatives (rates) as stored
in the .delay, .rate and .im files use the “positive delay above horizon” convention. The FITS-IDI files
(as produced by difx2fits and the VLBA hardware correlator) use the same convention as CALC, that is
“negative delay above horizon”.

5.3 Antenna coordinates

Geocentric (X,Y, Z) coordinates are used universally within the software correlator and its associated files.
This usage pattern extends to cover sched, CALC, the VLBA database and the existing hardware correlator
as well. The values are everywhere reported in meters. The Z-axis points from the Earth center to the
geographic North pole. The X-axis points from the Earth center to the intersection of the Greenwich
meridian and the equator (geographic longitude 0◦, latitude 0◦). The Y -axis is orthogonal to both, forming
a right handed coordinate system; The Y -axis thus points from the Earth center to geographic longitude
90◦E, latitude 0◦. The unit-length basis vectors for this coordinate system are called x̂, ŷ, and ẑ. The only
exception to the above stated rules is within the AIPS software package. Task FITLD flips the sign of the
Y coordinate, apparently to maintain consistency with software behavior established in the early days of
VLBI.

5.4 Baseline coordinates

The baseline vectors are traditionally put in a coordinate system that is fixed to the celestial sphere rather
than the Earth; see the discussion in §6.4 for a discussion of coordinates that is mathematically more precise.
The unit-length basis vectors for this coordinate system are called û, v̂, and ŵ. The axes are defined so that
ŵ points in the direction of the observed source tangent point, the û is orthogonal to both the vector pointing
to the celestial north pole N̂ (δJ2000 = +90◦) and ŵ, and v̂ orthogonal to û and ŵ. Note that the sign of the

32

v̂ is such that v̂ ·N̂ > 0 and {û, v̂, ŵ} form a right-handed coordinate system. A baseline vector ~Bij is defined
for an ordered pair of antennas, indexed by i and j at geocentric coordinates ~xi and ~xj . For convenience,

the Earth center will be denoted by ~x0 which has coordinate value ~0. The (u, v, w) coordinates for baseline

vector ~Bij is given by(~Bij · û, ~Bij · v̂, ~Bij · ŵ). There are two natural conventions for defining baseline vectors:
~Bij = ~xi − ~xj and ~Bij = −~xi + ~xj , which will be refered to as first-plus and second-plus respectively; both
conventions are used within the correlator system. Antenna-based baseline vectors are stored in polynomial
form in the .im file and tabulated in the .uvw file. In all cases antenna-based baseline vectors are baseline
vectors defined as ~Bi ≡ ~B0i = ±~x0 ∓ ~xi. The values stored in the .im and .uvw files adopt the first-plus
convention. For antennas on the Earth surface this implies that the w baseline component is always negative
for antennas that see the target source above the horizon. The difx format output from mpifxcorr contains
a baseline vector for each visibility spectrum computed from the locations of the antenna pair using the
first-plus convention. Note that in this file output, the reported baseline number is 256 ∗ i + j and i and j
are antenna indices starting at 1. The FITS-IDI format written by difx2fits adheres to the second-plus
convention.

5.5 Visibility phase

6 Reference guide to programs and utilities

This section has usage information for the numerous programs and scripts used in the DiFX system. Basic
help information for most or all of these programs can be gotten by typing the program name with either
no command line arguments or with a -h option, depending on the program. In the usage descriptions
below, arguments in square brackets [] are optional and can often include multiple different parameters.
Cases where 1 or more arguments of a certain type (such as files) can be passed to the program, the usage
instructions will look like arg1 [· · · argN], with the implication that N arguments of this type were passed.
In cases where 0 arguments of that type is also allowed, that first argument will also be in square brackets.
If it is not obvious from the program name, the software package containing the program follows the section
header. The package that includes each program is included in its section heading.

Note that several VLBA specific programs are discussed in this manual that are not documented here,
such as tsm. These are preexisting programs that may be documented elsewhere and are less likely to be
useful outside VLBA operations. Also note that programs from the nrao difx db package are internal to
NRAO and in general are not applicable outside VLBA operations. The code for these programs can be
made available upon request.

6.1 apd2antenna (package : difx2fits)

Python program apd2antenna will read a .apd file (see Sec. 7.5), which stores baseline-based fringe-fit
solutions, and writes to stdout an antenna-based set of fringe-fit values. These are determined through a
least-squares fit. A reference antenna must be specfied.

Usage: apd2antenna apdFile refAnt

apdFile is a .apd file (§7.5), created by difx2fits

refAnt is a 1-based number or text string indicating the reference antenna to be used

Example: apd2antenna DQ1206.apd 2

A reference antenna is required as the least-squares solution is ill-determined otherwise. The reference
antenna has its delay, rate, and phase set to zero in the process.

The output of this program, which is sent to stdout is documented in Sec. 7.1. It is conventional to
redirect the output of this program to a file ending in .aapd .

33

6.2 avgDiFX (package : difxio)

avgDiFX is a utility packaged with difxio. It reads two complete DiFX filesets that need to cover the same
timerange and have essentially the same array structure and produces a new complete fileset. The .input,
.calc, and .im files, along with any extracted pulse cal data, are copied from the first of the two datasets.
The visibility data from the two file sets is averaged. Certain pulsar processing may benefit from this
capability.

Usage: avgDiFX configFile1 configFile2 outputConfigFile

Example: avgDiFX pass1 01.input pass2 01.input output 01.input

6.3 bp2antenna (package : difx2fits)

Python program bp2antenna will read a .bandpass file (see Sec. 7.6), which stores baseline-based bandpass
solutions determined by difx2fits, and writes to stdout an antenna-based set of bandpasses. These are
determined through a least-squares fit separately to phase and amplitude. This program requests a reference
antenna be provided and a minimum of three antennas are required. This antenna’s phases are fixed to
be zero and all other antennas’ phases are determined relative to that antenna. If a negative number is
provided for the reference antenna, the antenna phases will be adjusted after antenna-based solutions are
found such that the average bandpass phase at each frequency is zero. The bandpass can be smoothed using
the low-pass filter LPF option. The value to be provided is measured in MHz; bandpass features smaller
than this are smoothed out. Optionally a pulse cal data file (determined by non-DiFX program pcalanal)
can be applied to create “absolute phase” antenna-based bandpasses. This feature is experimental. If
autocorrelation bandpasses are included in the .bandpass file, they will be ignored.

Usage: bp2antenna bandpassFile refAnt [LPF [pcalFile]]

bandpassFile is a .bandpass file (§7.6), created by difx2fits

refAnt is a 1-based number or text string indicating the reference antenna to be used

LPF is the low pass filter parameter, measured in MHz

pcalFile contains pulse cal phases after removing dominant delays (FIXME: to be documented...)

Example: bp2antenna DQ1206.bandpass 2

The output of this program, which is sent to stdout is documented in Sec. 7.2. It is conventional to
redirect the output of this program to a file ending in .abp .

6.4 calcif2

Program calcif2 evaluates the delay model, producing a delay model file (ending with .im) from a file
containing the source, antenna and scan timing information (ending with .calc). The detailed calculations
are performed by the Goddard CALC program. Prior to this writing (May 4, 2013), the only option for
the calculation back-end was CALC version 9 with NRAO additions which add ocean loading and near-field
corrections (accurate as close as a few ×105 km). Now new options are being introduced, including CALC
9 with the Sekido-Fukushima near-field model (using the --sekido option). Note that this option requires
an installation of a special version of CALC that is not covered in this document.

Instead of calling CALC for every tabulated model row, calcif2 computes a 5th degree polynomial every
120 seconds (typically), very closely resembling the delay model generation used at the VLBA hardware
correlator. These polynomials are then evaluated at each model point. This results in a tremendous speedup

34

at negligible loss of accuracy. By default calcif2 will call CALC three times for each model point and
calculates more accurate u, v, w coordinates from delay measurements made over a small patch of the sky:

(u, v, w) =

(
−cdτ

dl
, c
dτ

dm
, cτ

)
(1)

where l,m are angular coordinates (in radians) relative to the delay center on the sky, τ is the delay at the
delay center and c is the speed of light.

Normally calcif2 will be called by difxqueue, startdifx, or another higher-level program if needed.
calcif2 connects via Remote Procedure Call (RPC) to an instance of CalcServer which must be running

on a computer identified by environment variable $CALC SERVER, or by the specified computer if the -s option
is used. If the output files (specified in the .calc file) exist and are current (have newer modification times
than the .calc file, then the files will not be recreated unless the force option is used.

In addition to calculating the delay model, this program computes the baseline vectors, u, v, w (relative
to Earth center on a per-antenna basis) and source elevation vs. time.

Usage: calcif2 [options] { -a | calcFile1 [calcFile2 [· · ·]] }

options can be:

-h or --help : print usage information and exit

-a or --all : run on all .calc files found in the current directory

-v or --verbose : print more verbose logging/debug info

-q or --quiet : print less verbose logging/debug info

-f or --force : rerun even if output files exist and are current

-n or --noaber : don’t perform aberration u, v, w corrections

-F or --fit : Instead of producing an n term polynomial from n samples, calculate more samples
and perform a fit. This is not of general use as tests have shown that the improvement is negligible.

-z or --allow-neg-delay : don’t zero delays that are negative (i.e., shadowed by Earth)

-A or --noatmos : don’t include atmosphere in calculation of u, v, w

-s server or --server server : connect to server, not $CALC SERVER

-o order or --order order : make polynomials with order+1 terms (default 5)

-i int or --interval int : make a polynomial every int seconds (default 120)

--override-version ignore difx version clashes

calcFile is a .calc file (§7.26), such as one generated by vex2difx (§6.102)

Example 1: calcif2 job1420.000.calc job1421.000.calc

Example 2: calcif2 -s kepler job1420.000.calc

Example 3: calcif2 -a -i 60

6.5 CalcServer

Program CalcServer contains the Goddard Space Flight Center CALC package version 9.1, used to compute
geometric delay models for VLBI applications. It is a repackaged version of the same source code that is
used to compute models on the VLBA correlator. It is configured to run as a server. All of its interactions
are via RPC calls from other programs, such as calcif2, which could be running on the same or different
computer. This program only needs to be started once on a given machine using the startCalcServer

script. It should probably be set to start automatically upon boot of the machine on which CalcServer

runs. Environment variable $CALC SERVER should be set to the name of the computer on which CalcServer

is running.

35

Start: startCalcServer

Test: checkCalcServer $CALC SERVER

Stop: killall CalcServer

Note that CalcServer must be installed (with make install) to be usable as the paths for various files are
permanently set in the executables at compile time. At this time it seems CalcServer cannot be compiled
for 64-bit machines.

6.6 checkdir (package : mk5daemon)

Program checkdir can be used to check the integrity of one or more .dir files that are stored at a location
pointed by environment variable MARK5 DIR PATH . Even after many years of use, the Mark5 units tend to be
a weak point in the reliability of correlation. Since reading the module directory and examining a bit of data
from each scan are the first actions done to a module, many of the possible problems show up at this time.
This utility looks for a number of possible problems, including scans that could not be decoded, overlapping
or out-of-order scans, scans with illegal format parameters and others. This program makes no attempt to
fix problems. It is up to the operator to determine if a problem is real or not and if further action should
be taken. In cases where many scans are not properly decoded it is worthwhile to rename (or remove) the
.dir file in question and regenerate the directory. A second directory read often succeeds when a first one
does not.

Usage: checkdir [options] [module list]

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose in execution (-v -v for more)

-q or --quite : be less verbose in execution

-a or --all : run on all files in $MARK5 DIR PATH

-s or --show : print the entire directory file to screen

-H or --histogram : print a histogram of record rates

Example 1: checkdir -a

Example 2: checkdir NRAO-123 NRAO+266

Example 3: checkdir -s NRAO+233

Either -a or a list of module names can be provided (but not both simultaneously). If the former, a
less verbose output will be generated by default. Except in the lowest verbosity mode (the default for -a),
module directories without any detected problems will show a one line summary consisting of the number
of scans and the time range of the module.

6.7 checkmpifxcorr (package : mpifxcorr)

Program checkmpifxcorr reads the .input and other associated files for a DiFX job and parses them with
the same logic used by mpifxcorr in order to determine their validity.

Usage: checkmpifxcorr [options] configFile . . .

options can be:

36

-h : print usage information and exit

-f -s -e -w -i -v -d : select the verbosity level of output (options refer to “fatal”, “severe”,
“error”, “warning”, “info”, “verbose”, and “debug” levels).

All of the files referenced from the provided configuration (.input) files are read as well (excepting any
baseband files or the .vex file). This check has proven especially useful for pulsar processing. The default
verbosity level will lead to printing of any problems at the “warning” level or worse. See Sec. 8.1 for details
on the severity levels.

6.8 cleanVDIF (package : vdifio)

Program cleanVDIF loops through a VDIF file writing valid content to a new output file.

Usage: cleanVDIF inputvdiffile outputvdiffile Mbps [options]

inputvdiffile is the recorded VDIF file to clean

outputvdiffile is the corrected VDIF file to write

Mbps is the data rate in megabits/second

options can be:

-v or --verbose : be verbose in execution

Example: cleanVDIF bad.vdif good.vdif 256

6.9 condition (package : nrao difx db)

This is an NRAO-only program owing to its ties to the VLBA database.
Program condition is mainly used to extract Mark5 module conditioning reports from the database but

also has the means to manually import data into the database. When querying (with the find action), one
or more “identifiers” can be supplied which can be either the names of the Mark5 modules or serial number
of individual disks (or a mix of the two!). Environment variable VLBA DB must be set to point to the correct
database.

Usage: condition [options] action + args

options can be:

-h or --help : print usage information and exit

-v or --verbose : be verbose in execution

action can be one of:

add report1 [report2 · · ·]

find identifier1 [identifier2 · · ·]

report is the name of a file containing one or more condition reports from SSErase

identifier is either a Mark5 module VSN or a hard disk serial number

Example 1: condition add NRAO-040

Example 2: condition find NRAO-042

Example 3: condition find NRAO+342 NRAO+270

Example 4: condition find Y66M3BQE

37

6.10 condition watch (package : nrao difx db)

This is an NRAO-only program owing to its ties to the VLBA database.
Program condition watch is meant to run as a background process on the correlator head node. Its

function is to receive Mark5ConditionMessages emitted by a special version of SSErase (the module condi-
tioning program) and stuff this data into the database. This program is automatically started by mk5daemon

when it is supplied with the -w or --condition-watch arguments. When restarting mk5daemon by hand,
make sure that a duplicate copy of condition watch is not left running. Environment variable VLBA DB

must be set to point to the correct database.

Usage: condition watch [options]

options can be:

-h or --help : print usage information and exit

Example: condition watch

6.11 countVDIFpackets (package : vdifio)

Program countVDIFpacket loops through a VDIF file and counts number of valid and skipped frames.
Packet counts are performed only on the thread ID requested.

Usage: countVDIFpackets vdiffile Mbps threadId

vdiffile is the recorded VDIF file

Mbps is the data rate in megabits/second

threadId is the threadId to report on

Example: countVDIFpackets example.vdif 256 3

6.12 cpumon (package : difxmessage)

Program cpumon is a program that listens for difxLoad messages multicast from the Mark5 units and displays
the information; updating the display as new messages are received.

Usage: cpumon

Make sure the terminal is at least 60 characters wide and is at least as tall as there are computers that may
transmit information. To quit, use ctrl-C. The columns displayed are:

1. Computer name

2. CPU load averaged over 10 seconds

3. Memory usage / Total memory

4. Network receive rate (Mbps)

5. Network transmit rate (Mbps)

6. Number of CPU cores

38

6.13 diffDiFX.py (package : vis2screen)

Program diffDiFX.py generates a context-sensitive difference of two DiFX output files for detailed version
testing. Corresponding visibility records are differenced and statistics on the differences are accumulated
and printed at the end of the processing.

Usage: diffDiFX.py [options] { difxfile1 difxfile2] }

options can be:

-h or --help : print usage information and exit

-f FREQ or --freq=FREQ : Only look at visibilities from this FREQ index

-b BASELINE or --baseline=BASELINE : Only look at visibilities from this BASELINE num

-t THRESHOLD or --threshold=THRESHOLD : Display any difference that exceeds THRESHOLD

-e EPSILON or --epsilon=EPSILON : Display any differences that exceeds allowed numerical error
EPSILON

-s SKIPRECORDS or --skiprecords=SKIPRECORDS : Skip SKIPRECORDS records before starting
comparison

-m MAXRECORDS or --maxrecords=MAXRECORDS : Stop after comparing MAXRECORDS (if ¿0)
records

-p PRINTINTERVAL or --printinterval=PRINTINTERVAL : Print a summary every PRINTIN-
TERVAL records

-c MAXCHANNELS or --maxchannels=MAXCHANNELS : The length of the array that will be allocated
to hold vis results

-v or --verbose : Turn verbose printing on

-i INPUTFILE or --inputfile=INPUTFILE : Parse INPUTFILE for the correlation setup

--matchheaders : On seeing a header mismatch, skip through file 2 looking for next match

difxfile1 is the first difx file to compare

difxfile2 is the second difx file to compare

Example: difxDiFX.py -i example 1.input example 1.difx/DIFX 55523 025239.s0000.b0000

comparison 1.difx/DIFX 55523 025239.s0000.b0000

If the error for any record exceeds the specified threshold a verbose error message is printed. Summary
statistics are printed at the end of the file. Warnings are printed if the headers do not match between the
two files.

6.14 difx2fits

Program difx2fits creates a FITS output file from the native output format created by mpifxcorr and
several other files carrying information about the observation. Multiple input file sets can be specified. A
separate output FITS file is created for each unique frequency setup encountered. When run, difx2fits
requires the following files to be present for each DiFX file set being converted:

1. baseFilename.difx/

2. baseFilename.input

3. baseFilename.calc

39

4. baseFilename.im

Several other files are optional and are typically used to populate calibration and ancillary tables:

1. baseFilename.flag

2. flags

3. pcal

4. tsys

5. weather

6. $GAIN CURVE PATH/

7. .difx/*.history

With the exception of the gain curve files, all the input files to difx2fits are expected to be in the current
working directory or in the place indicated by the .input file. As the visibility file (.difx) is read, any
records that are all zero are omitted.

Usage: difx2fits [options] { -d | baseFilename1 [· · ·baseFilenameN] [outFile] }

options can be:

-h or --help : print usage information and exit

-n or --no-model : don’t write model (ML) table

-s scale or --scale scale : scale visibility data by scale

-t interval or --deltat interval : generate .jobmatrix file with time intervals of length interval
seconds

--difx-tsys-interval interval : the Difx-derived tsys interval (sec) (default 30.0s averaging)

--difx-pcal-interval interval : the Difx-derived pcal interval (sec) (default 30.0s averaging)

-S or --sniff-all : sniff all bins and phase centers, not just the first

-T interval or --sniff-time interval : use interval as the sniffer time resolution

-v or --verbose : increase verbosity of output; use twice or thrice to get even more

-d or --difx : run on all .difx files found in the directory

-k or --keep-order : don’t sort the antennas by name

-1 or --dont-combine : make a separate FITS file for each input job

-x or --dont-sniff : don’t generate sniffer output files

-0 or --zero : don’t put visibility data in FITS file

--bin b : Select on this pulsar bin number

--phasecentre p : (U.S. spelling okay too) Create a FITS file for all the pth phase centers (default
0)

--override-version : ignore difx version clashes

--bandpass : write the .bandpass file (see Sec. 7.6)

-m nJob or --max-jobs nJob : split into more FITS files after reaching nJob input files.

--eop-merge-mode mode : sets conditions for allowing jobs with different EOPs to be merged or
not; options are strict (default), drop, relaxed

40

--clock-merge-mode mode : sets conditions for allowing jobs with different clock models to be
merged or not; options are strict (default) or drop

--antpol : use antenna-based polarization labels as in VEX. Note: fits-idi file will violate original
specifications and abide extended specifications.

--polxy2hv : re-labels all polarizations XY to HV. Requires –antpol option.

baseFilename is the prefix of the jobfile to convert; it is okay to use the .difx filename instead

outFile is the name of the FITS file to produce; if not provided one will be made based on the project
code

Example 1: difx2fits dq109 1 DQ109.FITS

Example 2: difx2fits -v -v -d

Environment variables respected:

• DIFX GROUP ID : if set, run difx2fits with umask(2).

• DIFX LABEL : the local name of the difx install. Used to verify matching versions and put inside FITS
file; if not set, DIFX VERSION will be used instead.

• DIFX MAX SNIFFER MEMORY : maximum amount mf memory (bytes) to allow sniffer to use.

• DIFX VERSION : the difxbuild version name.

• GAIN CURVE PATH : directory containing gain files.

• TCAL PATH : a directory containing Tcal value files.

• TCAL FILE : if TCAL PATH is not set, use the file pointed to by this env. var.

Unless adjusted with the --difx-pcal-interval and --difx-tsys-interval parameters, the respective
PC and TY data will be time averaged to the default of 30 seconds. For geodetic VLBI or other observations
with very short scans you may want to shorten the averaging time.

Unless disabled with the --dont-sniff or -x flag, four “sniffer” output files (.acb, .apd, .wts and .xcb)
will be written for each .FITS file produced. These files are used by difxsniff and its associated programs
to produce data plots that are used to assess data quality.

Unless disabled by setting interval to a non-positive number with the -t or --deltat option, an output file
with suffix .jobmatrix will be produced. This file contains an ASCII art diagram of which jobs contributed
to each .FITS file produced as a function of both time and antenna.

Unless augmented with option --antpol the produced FITS files are fully compliant with the original
FITS-IDI specifications. In case of mixed mode polarization (XY against RL) or certain feed types (HV in
particular) the option --antpol allows to force output of noncompliant but polarization correct FITS files;
FITS-IDI numerical parameter STK 1 is set to the new value of -9, indicating to post-processing software that
it should refer to the existing FITS-IDI character parameters Antenna1Feed1 and Antenna2Feed1 (populated
from VEX) for the polarization details.

If submitting a bug report for difx2fits, please include in it the full output of difx2fits -v -v and
the .input and .calc files.

difx2fits displays several diagnostics during the conversion process, separately for each output FITS
file. The size of each FITS table is printed; a zero size indicates that table is not produced. For the visibility
table, input files contributing to the output are printed. Scan information is printed at increased verbosity
levels. Not all DiFX output visibilities are written to the FITS file. Accounting of the disposition of the
visibilities is provided. Invalid records are those containing infinite or NaN values and indicate a likely bug in
the software. Flagged records are those identified by vex2script (or other DiFX file set generation programs)

41

in the .flag file as being illogical, such as cases where a particular baseline during a job belongs to a different
subarray. When using integration times longer than 1 second it is possible for one visibility to span two
scans. Such records are dropped. Finally any visibilities, produced outside a normal scan start/stop time
are dropped; this should not occur unless the .calc file is modified between correlation and FITS creation.

If there are any files matching .difx/*.history for .difx/ output being converted to .FITS, the contents
of these files will be inserted into the FITS HISTORY table.

6.15 difx2mark4

Program difx2mark4 creates a Mark4 output file set from mpifxcorr input and output files. When run,
difx2mark4 requires the following files to be present for each file set being converted:

1. baseFilename.difx/

2. baseFilename.input

3. baseFilename.im

as well as the .vex file referenced in the .input file, which may be common to many DiFX file sets.

Usage: difx2mark4 [options] baseFilename1 [· · ·baseFilenameN]

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase verbosity of output; use twice or thrice to get even more

-d or --difx : run on all .difx files found in the directory

-k or --keep-order : don’t sort the antennas by name

--override-version : ignore difx version clashes

-r or --raw : suppresses normalization of amplitudes

-p or --pretend : do a dry run

-e or --experiment-number n : set the experiment number to n which must be a 4 digit number
(default is 1234)

-b code flo fhi : Override freq band codes. Frequencies are in MHz. Multiple parameters of this
kind can be specified.

baseFilename is the prefix of the jobfile to convert without the underscore and job number

Example difx2mark4 dq109

6.16 difxarch (package : nrao difx db)

Program difxarch is a simple script that moves FITS files produced by makefits from the correlation queue
staging area (defined by the DIFX QUEUE BASE environment variable) to the archive staging area (defined by
environment variable DIFX ARCHIVE ROOT). A process running on the archive computer will periodically
monitor new files in this staging area and will then copy them to the actual archive. In order to prevent
premature pick-up of these files, they are first moved into a directory with a name beginning with a period
(.). This directory is renamed without the period once all files to be archived are copied.

Usage: difxarch [options] passName1 [· · ·passNameN]

options can be:

42

-h or --help : print usage information and exit

-v or --verbose : increase verbosity of output

-p or --pretend : generate SQL and bash commands but don’t execute them

--override-version ignore DiFX version clashes

passName is the name of a correlator pass; a file called passName.fitslist is expected to be present

Example: difxarch -v clock

6.17 difxbuild

Program difxbuild aids in the installation of DiFX onto a cluster. Full documentation on the install process
can be found in §??, so details will not be shown here. Command syntax is as follows:

Usage: difxbuild [options] command [command arguments]

options can be:

-h or --help : print usage information and exit

-d or --documentation : print full in-line documentation to screen

-t ot --todo : print developer’s to-do list

-v or --verbose : increase verbosity of output

-q or --quiet : decrease output verbosity

-p or --pretend : generate SQL and bash commands but don’t execute them

-V or --version : print version and quit

command is one of the difxbuild commands, such as build or svn; the program help information will
list all options

command arguments are options for some commands

6.18 difxcalc11

6.19 difxcalculator (package : difxio)

Program difxcalculator looks at a set of DiFX input files (.input, .calc, etc.) and reports/calculates key
operating parameters. This program is inspired by the difx calculator.xls spread sheet available at
http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/calculator.

Usage: difxcalculator [options] baseName [speedUp]

options can be:

-h or --help : print usage information and exit

baseName is the base name of a correlator job

speedUp is the expected processing rate relative to real-time

Example: difxcalculator mt933 01

Known bugs:

1. Does not take into consideration multiple phase centers or zoom bands.

43

http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/calculator

6.20 difxclean (package : nrao difx db)

Program difxclean simply deletes all data from $DIFX QUEUE/ for a particular project. It also removes
all jobs with status not equal to COMPLETE for this project from the DIFXQUEUE table of the database. It
is intended that is be run at the same time the project is released, meaning data has been correlated and
archived. The user does not have to be in any particular directory when running this program.

Usage: difxclean [options] project

options can be:

-h or --help : print usage information and exit

-p or --pretend : don’t actually do the erasure

project is the name of the project to be “cleaned” out

Example: difxclean mt917

6.21 difxcopy (package : misc utils)

Python program difxcopy is used to copy DiFX input (and other) files to a different directory. In the
process, explicit references to other files that are being copied are changed to reflect their new file system
path. For a given file prefix, prefix, the following files are copied if they exist: prefix.input, prefix.calc,
prefix.flag, prefix.delay, prefix.uvw, prefix.rate, and prefix.im. The .vex file referenced within the .calc

file is also copied.

Usage: difxcopy [options] jobPrefix1 [· · ·jobPrefixN] destDir

options can be:

-h or --help : print usage information and exit

-v or --verbose : possibly increase verbosity of output

jobPrefixN is the file prefix of a job, e.g., mt911 04 would be the prefix corresponding to input file
mt911 04.input

destDir is the directory in which the copied and modified files will be placed

Example: difxcopy mt911 02 mt911 03 mt911 04 /home/difx/queue/MT911

6.22 difxdiagnosticmon (package : difxmessage)

Program difxdiagnosticmon listens for multicast messages of the difxStatus variety and simply prints
their contents to the terminal. This is mainly useful for debugging mpifxcorr. Diagnostic information that
is produced includes status of internal buffers, memory usage, execution time, data throughput and lost
subintegrations.

Usage: difxdiagnosticmon [options]

options can be:

-h or --help : print usage information and exit

44

6.23 difxlog (package : difxmessage)

Program difxlog can be used to collect DiFX multicast messages for a particular correlator job and write
them to a file. A new instance of difxlog must be started for each job being run. Normally this will be
done automatically if implemented in the particular deployment of DiFX. Both startdifx and mk5daemon

can start DiFX and will instantiate a difxlog process as needed. Only messages of type DifxAlertMessage

and DifxStatusMessage are collected and written to the output file.

Usage: difxlog jobIdentity outFile [logLevel pidWatch]

jobIdentity : the name of the job being run (specifically, it should match the identifier field in the
DifxMessage being sent).

outFile : the name of the output file containing log information.

logLevel : the minimim message severity to retain (see §8.1).

pidWatch : the program id (in the Unix sense) of the mpifxcorr process running.

Example: difxlog mt911 04 mt911 04.difxlog 4 1243

Unless a pidWatch value is specified, difxlog will run until killed. If a pidWatch value is provided,
difxlog will quit as soon as that process stops running. The loglevel parameter can be used to select the
maximum severity level to write to the log. The possible values and their meanings are:

0 Fatal mpifxcorr cannot continue because of the noted problem
1 Severe an internal error that should never happen happened (likely bug)
2 Error a problem was encountered in the data processing
3 Warning something suboptimal was noted
4 Informative a note containing progress information
5 Verbose more detailed progress information
6 Debug values probably of use only to software developers

6.24 difxqueue (package : nrao difx db)

This is an NRAO-only program owing to its ties to the VLBA database.
Python program difxqueue is a program used to maintain the DiFX correlator queue. There are two

main responsibilities in doing so: copying or deleting files in the correlator queue directory (which is project
specific: $DIFX QUEUE BASE/projectName) and maintaining the database entries for each queued job. In the
VLBA context, this program is the main interface between the analysts and the correlator operators. This
program is mainly intended to work on one job pass at a time rather than single jobs or whole projects.
In some cases one job pass could be one job, or it could be a whole project (or both), but in many cases
there will be multiple passes per project with possibly multiple jobs per pass. It is possible for difxqueue

to operate on individual jobs when a list of job numbers is provided. The first command line argument
describes the action to perform. Each subsequent argument is then context dependent; see the examples or
run with the -h command line parameter to get a feel for the variety of options allowed. Once a job has
been correlated successfully, its status will be COMPLETE. There is no need to delete a job from the queue
once it is complete. Doing so will require recorrelation if the results of that job are still needed. Each job in
the queue has a priority. The smaller the priority, the lower the number. By default a queued job will have
priority 2.

Usage: difxqueue [options] action [args]

options can be:

-h or --help : print usage information and exit

45

-p priority or --priority priority : set the priority of jobs to priority

-q queuedir or --queuedir queuedir : manually set the staging directory

-v or --verbose : increase verbosity of output

-d or --db-only : do not copy/delete/move files; operate only on database

--override-version : ignore DiFX version clashes

action : the action to perform

add : add job(s) to the queue, usually a whole pass at a time. Default priority is 2; use the -p

option to set the priority if a different priority is required.

Example 1: difxqueue add clock

Example 2: difxqueue add mt911 1 2 3 4

Example 3: difxqueue -p 3 add geodesy

bump : increase the priority of queued job(s)

Example: difxqueue bump clock

del : remove job(s) from the queue

Example 1: difxqueue del clock

Example 2: difxqueue del mt911 2 3

list : list all jobs within a pass

Example: difxqueue list mt911

listall : list all incomplete jobs in the queue; note that this is not restricted even to any
particular project. If one or more projects is specified, all jobs, complete or not, for those projects
will be listed. If no segment code is appended to a project name, then all matching proposal codes
will be listed.

Example 1: difxqueue listall

Example 2: difxqueue listall BX123 BY321

Example 3: difxqueue listall BR138A

log : list all correlations that have happened for a given project. This simply searches the
DIFXLOG database table and dumps it to the screen in a readable fashion.

Example 1: difxqueue log BX123

prod : print production queue list, possibly sending to a file

Example 1: difxqueue prod

Example 2: difxqueue prod queue.txt

set : set the status of queued job(s)

Example 1: difxqueue set tc015d COMPLETE

Example 2: difxqueue set tc015d QUEUED 3 4

slide : decrease the priority of queued job(s)

Example: difxqueue slide mt911 6

args : action dependent arguments, usually a pass name and possible list of job numbers

Note that exept for the listall and prod actions, the current working directory must contain the
.joblist file for a project.

46

6.25 difxsniff (package : SniffPlots)

Program difxsniff is a reimplementation of the VLBA analysts’ program sniff.pd to be more appropriate
for software correlation where the sniffer data is generated at the same time as the FITS files. It uses the
same underlying set of plotting programs (plotwt, plotbp, and plotapd) as sniff.pd did. It should be
run in a project directory as it will create a subdirectory (if not existing already) which by default is called
sniffer/refant within the current directory. All files created by difxsniff will be placed in this directory,
overwriting existing files with the same filenames. Unlike sniff.pd, difxsniff is a purely non-interactive
command line program. Note that although .FITS files are provided to difxsniff, it is the associated files
ending in .apd, .wts, .acb and .xcb that are actually read.

Usage: difxsniff [options] refants FITS1 [· · · FITSN]

options can be:

-h or --help : print usage information and exit

refants is a list reference antennas, separated by spaces

FITS is a FITS file created by difx2fits; multiple FITS files can be specified together

Example 1: difxsniff LA *.FITS

Example 2: difxsniff NL FD *.FITS

6.26 difxspeed (package : vex2difx)

Program difxspeed does processing benchmarking, possibly over a range of parameters, of DiFX. To ensure
that data playback (reading from files, Mark5 modules or network) are not limiting performance, the FAKE
mode of DiFX (see §??) is used; thus the output data are meaningless. difxspeed takes a .speed (§7.14)
file as input. This file contains various parameters, many of which are identical to those in the .v2d (§7.42)
files. An important difference with the parameters specified in .speed files is that multiple values can
be provided for many of the parameters. In the benchmarking process, a separate run of DiFX for each
combination of the supplied parameters is performed. The first combination is run twice, with the first being
labeled a dummy run. This is because the timing of the first execution can vary depending on recent usage
of the correlator.

Usage: difxspeed [options] inputFile [numIterations]

options can be:

-h or --help : print usage information and exit

inputFile is the .speed file describing the series of benchmarks to run

numIterations is the number of times to execute all test combinations

Each run of difxspeed will append a new column of data to a file called inputFile.out ; if the file does
not exist, a new file will be created. Documentation of this output file format can be found in §7.15.

6.27 difxusage (package : nrao difx db)

This is an NRAO-only program owing to its ties to the VLBA database.
Program difxusage mines the VLBA database for correlator usage statistics. Usage is as follows:

Usage: difxusage [options] mjdStart mjdStop

47

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose in execution

-l or --list : print all matching jobs

-a or --all : select jobs in all states

-c or --complete : select only complete jobs (default)

-k or --killed : select only killed jobs

-u or --unknown : select only unknown jobs

mjdStart is the start time (in Modified Julian Days) to look for jobs

mjdStop is the stop time (in Modified Julian Days) to look for jobs

Note that environment variable VLBA DB must be set to point to the postgres database in question.

6.28 difxvmf (package : calcif2)

Note: this is coming in DiFX 2.7 series. . .
difxvmf takes a DiFX fileset (including the .im file) and modifies the wet and dry troposphere values

based on the Vienna Mapping Functions. This program retrieves the needed external data from http:

//vmf.geo.tuwien.ac.at. The .im file will be replaced with an updated version.

Usage: difxvmf [options] filebase1 [filebase2 . . .]

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose in execution

-w or --usewx : use metrology data from each site rather than defaults

filebasen is the .input file or prefix to be processed; multiple can be provided.

If --usewx is specified, files of the form project.station.weather will be looked for in the local directory
and used to supply metrology data, overriding defaults.
Environment variables:

DIFX VMF DATA : a writable directory for caching downloaded VMF data

DIFX VERSION : to enforce DiFX version compatibility

6.29 difxwatch (package : difxmessage)

Program difxwatch can be used to monitor progress of ongoing DiFX jobs and kill jobs that appear to be
hung.

Usage: difxwatch [options]

options can be:

-h or --help : print usage information and exit

--version : show program’s version number and exit

-i idletime or --idle-time idletime : maximum number of seconds a job is allowed to be idle
before it is killed.

48

http://vmf.geo.tuwien.ac.at
http://vmf.geo.tuwien.ac.at

6.30 DiFX Operator Interface

The DiFX Operator Interface (DOI) is a java-based application to monitor and control the correlation of
DiFX jobs. Jobs to be correlated can be selected with a file browser or retrieved with a database request.
A separate manual [?] will be made available with instructions for its use. The only specific detail that will
be mentioned here is the contorted path the starting of a job takes:

1. The job to run is selected.

2. The DOI determines which resources (Mark5 units and processor nodes) are required.

3. If the intended output file already exists, a dialog will ask the operator whether to overwrite this file
or not.

4. The DOI allocates resources.

5. The DOI assembles a DifxStartMessage XML document and multicasts it with the correlator head
node as the recipient.

6. The mk5daemon process running on the head node captures this message.

7. mk5daemon fork()s; the child process changes its userId to difx and spawns an mpirun process via ssh

to ensure the proper environment variables are set.

8. The mpirun process starts a copy of mpifxcorr on each of the Mark5 units and processing nodes that
is requested.

9. mk5daemon fork()s again; the child process changes its userId to difx and spawns a difxlog process
via ssh to ensure the proper environment variables are set.

10. All processes continue until job end is reached or the job is killed.

11. When the first fork()ed mk5daemon process ends, the difxlog process stops automatically, causing the
second fork()ed process also to stop.

12. The DOI receives messages suggesting the job has ended and frees the allocated resources.

6.31 e2ecopy (package : nrao difx db)

Program e2ecopy copies files one directory to another, changing the ownership to $DIFX ARCH USERNAME

in the process. This program must be setuid root; the person installing the program must run chmod +s

e2ecopy after installation if make install is not run by root. Normally this program is run by difxarch

(see §6.16). This is a VLBA-centric program, but could be used by others.

Usage: e2ecopy [options] fromDir toDir file1 [· · · fileN]

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose

fromDir : the source directory of the file(s) to copy

toDir : the destination directory

file : a file to copy (multiple files may be provided)

Note: “e2e” is NRAO terminology for “End to End”, a philosophy of providing user software covering the
full project lifecycle from proposal handling to archive access. In this particular case the name arose due to
the location of the archive staging area at NRAO.

49

6.32 errormon (package : difxmessage)

Program errormon listens for multicast messages of the difxError variety and simply prints their contents
to the terminal. It is effectively the same as difxlog except that log data is sent to stdout rather than a
systematically named file.

Usage: errormon [options] [maxSeverity]

options can be:

-h or --help : print usage information and exit

maxSeverity : maximum severity level to display (default = 8)

See § 8.1 for a list of severity codes. If no maxSeverity is provided, the default level of 8 will cause no
selection to occur; all messages will be printed.

A similar program, errormon2, does nearly the same thing, but defaults to a less verbose output, and
sends output to stderr rather than stdout (so use with grep or other *nix tools is more cumbersome. It also
writes its output to a log file.

See documentation for difxlog to see the list of alert levels.

6.33 extractSingleVDIFThread (package : vdifio)

This program has been superceded by vmux (see Sec. 6.105).

6.34 extractVDIFThreads (package : vdifio)

This program has been superceded by vmux (see Sec. 6.105).

6.35 fakemultiVDIF (package : vdifio)

Note: the input file for fakemultiVDIF must have a single thread or unpredictable results will occur.

6.36 fileto5c (package : mark5daemon)

6.37 filterVDIF (package : vdifio)

6.38 generateVDIF (package : vdifio)

6.39 genmachines (package : mpifxcorr)

Program genmachines uses the information in a .input file and a file containing information about the
members of the compute cluster (such as the file pointed to by $DIFX MACHINES) to produce a .machines

file (§7.31) needed by mpifxcorr. Note that genmachines is not intended to be run by hand anymore as
startdifx does this, if necessary. If playback directly off Mark5 units is to be done, genmachines will send
a multicast request to all Mark5 units on the correlator requesting an inventory of loaded Mark5 modules.
The mk5daemon process on each unit will respond with another multicast message containing the loaded
modules and the status of the unit, i.e., whether busy or available to be used. This information is collected
by genmachines which will look for availability of all the modules and detect conflicts (i.e., two needed
modules loaded in the same unit). If all needed modules are found and enough resources remain for the
computations, a .machines file and a .threads file are written. Note that the .machines file contains a
certain number of comment lines so that the use of Unix command wc -l can be used to determine exactly
how many processes will be started. It is suggested to run this program immediately before starting the
software correlator to minimize the chance that the Mark5 units change their status or that information
about the modules whereabouts becomes stale; it is thus discouraged to run with *.input.

50

Usage: genmachines [options] input1 [· · · inputN]

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose

-o or --overheadcores ohc : leave at least ohc on each compute node unscheduled

-m file or --machinesfile file : use file instead of $DIFX MACHINES

-n or --no-threads : don’t write a .threads file.

-d or --difxdb : lookup module locations in a database.

input is a .input file; multiple files can be specified, each producing its own .machinesfile

6.40 getshelf (package : nrao difx db)

This is an NRAO-only program owing to its ties to the VLBA database.
Program getshelf retrieves the shelf location of specified modules from the legacy VLBA database and

prints them to the screen. While possibly useful, this program is not required for the software correlation
process.

Usage 1: getshelf [options] module1 [module2 [· · ·]]

Usage 2: getshelf [options] shelfFile

options can be:

-h or --help : print usage information and exit

-v or --verbose : print the database query string as well

moduleN is the volume serial number (VSN) of a module; multiple modules can be specified

shelfFile is a .shelf file (§7.37), as may be written by db2vex Default is the current working directory
if none is provided.

Example 1: getshelf NRAO+267

Example 2: getshelf bx123a.skd.shelf

6.41 jobdisks (package : mpifxcorr)

Program jobdisks looks through job files to see which modules (disks) are needed for correlation. It
reads through .input files, as used by mpifxcorr, to get the needed information. There are two modes of
operation. By default, a matrix of all modules for all stations is displayed, with a -- symbol indicating that
a particular station is not used in a particular job. An asterisk (*) indicates a module change. The second
mode, instigated with command line argument -c, summarizes only module changes. Running without any
arguments will cause jobdisks to look at job files within the current directory, prioritizing on .input files
if any exist and falling back on .fx files otherwise. Listings for a subset of jobs can be made by specifying
particular files.

Usage: jobdisks [options] [file1] · · · [fileN]

options can be:

-h or --help : print usage information and exit

51

-c or --changes : print module changes only

file is a .fx or .input file; mixed types are not supported. Multiple input files may be supplied.

Example 1: jobdisks

Example 2: jobdisks job1420*.input

Example 3: jobdisks *.fx

Example 4: jobdisks -c

Known bugs:

1. Program should make sure datastream type is MODULE.

6.42 joblist (package : mpifxcorr)

Program joblist prints useful information about DiFX correlator jobs to stdout. Six columns of output are
produced:

1. Job file base filename

2. File indicator, showing a particular character for each one of the files associated with that job that is
found within a pair of square brackets, []:

c .calc file (§7.11)

m .machines file (§7.31)

t .threads file (§7.38)

i .im file (§7.25)

v .difx file (§7.12)

3. Band code of first scan in file

4. Observation duration of correlation (in minutes)

5. Recording mode triplet; three integers(data rate(Mbps), number of baseband channels & quantization
bits) separated by dashes

6. Comma separated list of antennas

One line is printed for each .input file found in the list of directories provided (or current directory if not
listed).

Usage: joblist [options] [dir1] · · · [dirN]

options can be:

-h or --help : print usage information and exit

dir is a directory for which to print job information (default is current shell directory). Multiple
directories can be specified.

Example 1: joblist

Example 2: joblist $JOB ROOT/*

52

6.43 jobstatus (package : mpifxcorr)

Warning: As of DiFX 2.0.1, this utility has not yet been updated to work with DiFX 2 output
format.
Program jobstatus lists the current correlation progress for each DiFX job in one or more directories. This
program is normally run without any command line arguments from within the project directory. For each
job, the base filename is listed with 5 or 6 additional columns of data. These columns are

1. Observation duration (minutes)

2. Record mode triplet (Mpbs-nChan-nBit)

3. Number of stations in job

4. Speed up factor (ratio of correlation time to observe time), or zero if correlation has not yet begun.

5. Percentage complete

6. Number of minutes remaining (only if Percentage complete isn’t 0% or 100%)

Below these lines, five more lines containing information about the group of jobs as a whole is are presented.
The contents of these lines are:

1. Total job time : Minutes of observe time in listed jobs

2. Fraction complete : Percentage in time through the entire project

3. Job time remaining : Minutes of observation left to be correlated

4. Wall time remaining : Minutes of real time needed to complete jobs

5. Average speedup : Ratio of total correlation time to run time, up to current point

Note that the speedup and time remaining values are estimates and don’t include model calculation, con-
version to FITS, and job startup time.

Usage: jobstatus [options] [dir1] · · · [dirN]

options can be:

-h or --help : print usage information and exit

dir is a directory for which to print job information (default is current shell directory). Multiple
directories can be specified.

Example 1: jobstatus

Example 2: jobstatus $JOB ROOT/*

Known bugs:

1. This program has not been updated to work with DiFX 2.0 output

53

6.44 listcpus (package : mk5daemon)

Python program listcpus uses ssh to connect to each machine listed in a file (usually $DIFX MACHINES) and
peaks at the list of CPUs on that machine and prints to stdout. Only the first column of this file is used
and any content after a # is ignored. For each CPU on the machine, the model name, which usually also
contains the CPU speed, is listed. For multi-core CPUs, each core will appear as its own CPU.

Usage: listcpus [options]

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase output verbosity

-m file or --machines file : use file instead of $DIFX MACHINES for list of machines to probe

Multiple directories can be specified.

Example 1: listcpus

Example 2: listcpus -m myCPUs.list

6.45 makefits (package : difx2fits)

This program is tuned for NRAO use; some modifications may be required for use at other sites. In particular,
this program requires that jobs were queued to be run in $DIFX QUEUE BASE//experiment/.

Program makefits is basically a wrapper for difx2fits (§6.14) that does some sanity checking and
ensures that files end up in the proper places with the proper names. This program is intrinsically pass-based
and it bases its functionality on the .joblist (§7.27) file that is written by vex2difx (§6.102). One must
run this program on the software correlator head node (swc000 in the current VLBA DiFX implementation).
Upon successful completion, FITS-IDI files are created in the same directory in the correlator job staging area
($DIFX QUEUE BASE/projectName) and the sniffer output files are left in a subdirectory of the current working
directory. An additional output file is left in the current working directory called passName.fitslist . This
file has a list of the FITS files that are to be archived once the data for this pass are deemed valid.

The checks that makefits performs will by default not allow an incomplete set of FITS files to be
produced. This can be overridden with a special command line argument (below). This is part of an
accountability chain that aims to ensure that nothing gets omitted.

Usage: makefits [options] passName

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase output verbosity

--override-version : ignore potential difx version conflicts

--allow-partial : bypass check for complete set of correlated output and proceed

Multiple directories can be specified.

Example: makefits clock

54

6.46 makemark4 (package : difxdb)

This program is tuned for NRAO use; some modifications may be required for use at other sites.
Program makemark4 is essentially a wrapper for difx2mark4 (§6.15) that does some sanity checking and

ensures that files end up in the proper places with the proper names. This program is intrinsically pass-based
and it bases its functionality on the .joblist (§7.27) file that is written by vex2difx (§6.102). One must
run this program on the software correlator head node (swc000 in the current VLBA DiFX implementation).
Upon successful completion, Mark4 file sets are created in the same directory in the correlator job staging
area ($DIFX QUEUE BASE/projectName). An additional output file is left in the current working directory
called passName.mark4list . This file has a list of the Mark4 file sets that are to be archived once the data
for this pass are deemed valid.

Usage: makemark4 [options] passName

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase output verbosity

Example: makemark4 rdv95

6.47 m5bstate (package : mark5access)

Program m5bstate will perform state counts on a baseband data file.

Usage: m5bstate file format nFrames [offset]

file is the file to decode

format is the format of the data

nFrames is the number of data frames (typically a few kB in size) to decode

offset is the number of bytes into the file to start decoding

Example: m5bstate sample.vlba VLBA1 2-256-8-2 100

Notes:

1. See documentation for m5b for details on specifying the data format.

2. Only real-sampled data with 1 or 2 bits per sample is supported at this time.

3. In the case of VDIF data, only single thread data with 2n channels is supported. For equivalent
functionality in the multi-thread VDIF case see vdifd.

6.48 m5d (package : mark5access)

Program m5d is a very simple example program using the mark5access decoding library. It turns out to be
useful enough as a stand-alone program to be separately documented. This program takes as command line
input the name of a file containing (or thought to be containing) VLBI baseband data, the expected format
of the data, and the number of samples per baseband to decode. Optionally a starting file offset can be
supplied. If the data can be decoded correctly, information about the data will be printed to the screen
along with a table of decoded data. The output values, -3, -1, 1, or 3 for valid data, are printed in nchan
columns. Data that cannot be decoded (either due to data replacement headers, data fill pattern replacing
the actual data after unloading from a Mark5 module, or identified via the VDIF invalid bit) will show as 0.
It should be invoked with the following parameters:

55

Usage: m5d file format n [offset]

file is the file to decode

format is the format of the data

n is the number of samples to decode

offset is the number of bytes into the file to start decoding

Example 1: m5d sample.vlba VLBA1 2-256-8-2 24

Example 2: m5d sample.mk4 MKIV1 4-128-2-1 600 200

Example 3: m5d sample.5b Mark5B-512-16-2 1200

The format parameter is constructed from four parts as type-rate-nchan-nbit where:

type is the type of format and should be one of VLBA1 1, VLBA1 2, VLBA1 4, MKIV1 1, MKIV1 2, MKIV1 4,
Mark5B, or VDIF

rate is the data rate in Mbps

nchan is the number of baseband channels

nbit is the number of bits per recorded sample

See the usage examples above for some explicit values. Note for the VLBA and MKIV format types the fanout
is appended as this affects the decodability of the files.
Notes:

1. In the case of VDIF data, only single thread data with 2n channels is supported. For equivalent
functionality in the multi-thread VDIF case see vdifd.

6.49 m5findformats (package : mark5access)

Program m5findformats attempts to determine which format a baseband data file may be. Currrently it
searches over 16 to 2048 Mbps data rates in factors of 2 and checks only for MKIV, VLBA and Mark5B
types.

Usage: m5findformats filename

• filename is the name of the baseband data file.

Run with no command line arguments to get help information.

6.50 m5fold (package : mark5access)

Program m5fold takes a baseband data stream and integrates the power (formed by squaring the voltage)
in a number of time bins that equally divide a given period. This is a simplifed version of “folding” such
as is used in pulsar processing. A typical use of such functionality would be to investigate the waveform of
the switched power injected into the receiver for calibration. This program has found considerable utility in
determining time offsets between the sample clock and formatter time (modulo the period of the calibration
cycle). In the case of 2-bit sampling a non-linear correction is applied before results are written to a file.
This correction takes the form

P =
1(

erf−1

(
P̂−v2

high

1−v2
high

))2 , (2)

56

where P is a value proportional to true power and P̂ is the value obtained by calculating
〈
v̂2
〉

when the
bitstream is reproduced with values v̂ ∈ (−vhigh,−1, 1, vhigh). This non-linear correction can be turned off
by setting nbin to a negative value. Note that this program is not useful for 1-bit quantized data. The
program should be used as follows:

Usage: m5fold infile format nbin nchunk freq outfile [offset]

infile is the file to decode

format is the format of the data‘

nbin is the number of bins to calculate per period; if negative, power correction is not performed and
the absolute value of nbin is used

nchunk is the number of 10000 sample chunks to operate on

freq is the reciprocal of the period to be observed (Hz)

outfile is the name of the output file

offset (optional) is the number of bytes into the file to start decoding

Example: m5fold sample.vlba VLBA1 2-256-8-2 128 10000 80 sample.fold

See the documentation for m5d for information on specifying the data format.
The output file will contain nchan+1 columns where nchan is the number of baseband channels in the

data stream. The first column contains the time (seconds) within the period. Each remaining column is
folded power for one baseband channel. If nbin is positive and the data is 2-bit quantized, the scaling is such
that

〈
v2
〉

= σ2 yields a power reading of 1.0, for sampler threshold σ. Optimal signal to noise ratio occurs
for a value of about 1.03. For non 2-bit quantization, the power will be in units of reconstituted counts2.

In the case of VDIF data, only single thread data with 2n channels is supported. For equivalent func-
tionality in the multi-thread VDIF case see vdiffold.

6.51 m5pcal (package : mark5access)

Program m5pcal can be used to extract pulse cal tones from baseband data in Mark4, VLBA, Mark5B and
single-thread VDIF formats.

Usage: m5pcal [options] infile format freq1 [freq2 [. . .]] outfile

options can be:

-h or --help : print usage information and exit

-c n or --chunksize n : use a fixed rather than automatic chunk size

-v or --verbose : increase output verbosity

-q or --quiet : decrease output verbosity

-n n : loop over n chunks of data (default is 1000)

-N N : perform N outer loops, each yielding a result set

-o o or --offset o : jump o bytes into file

-i i or --interval i : use pulse cal comb interval of i MHz (default is 1)

-e e or --edge e : don’t use channels closer than e MHz from band edges when computing delay
(default is 1/8 of bandwidth)

infile is the file to decode

57

format is the format of the data‘

freq1 . . . is/are the frequencies (MHz) relative to baseband of the first tone to detect; there should be
one freq specified per baseband channel

outfile is the name of the output file

Note: The position of the first tone in a baseband channel (freq1 for baseband 1, and so on) must not be
larger than the tone interval (set with -i i). All tones are extracted from each baseband channel. The tone
interval is allowed to exceed the bandwidth of a baseband channel in which case freqN will effectively select
just a single tone from the baseband.

See the documentation for m5d for information on specifying the data format.

6.52 m5slice (package : mark5access)

6.53 m5spec (package : mark5access)

Program m5spec is an example program using the mark5access decoding library that is a bit more advanced
than the m5d program is. It forms total power spectra for each baseband channel in the data, including cross
spectra for polarization pairs, assuming data is in alternating polarization pairs (if not, the cross spectra
should make no sense, but they are formed anyway). The results are written to a text file with the following
columns: Column 1 is the frequency offset from baseband for each channel; Columns 2 to nchan+1 are
the total power spectra for each baseband channel; Columns nchan+2 to 4×nchan+1 contain, in pairs, the
amplitude and phase of the cross spectra for each pair of channels. It should be invoked with the following
parameters:

Usage: m5spec infile format npoint n outfile [offset]

infile is the file to decode

format is the format of the data

npoint is the number of points to calculate for each spectrum

n is the number of FFT frames to include in the calculation

outfile is the name of the output file

offset (optional) is the number of bytes into the file to start decoding

Example: m5spec sample.vlba VLBA1 2-256-8-2 256 1000 vlba.spec

See the documentation for m5d for information on specifying the data format.
In the case of VDIF data, only single thread data with 2n channels is supported. For equivalent func-

tionality in the multi-thread VDIF case see vdifspec.

6.54 m5test (package : mark5access)

Program m5test is an example program using the mark5access decoding library that works its way through a
VLBI baseband data stream attempting to decode data and header information to look for problems. Every
million samples (per baseband channel) a summary line containing frame number, decoded date and time,
and counts of valid and invalid frames are shown. After 20 invalid frames are encountered the program will
stop. Otherwise the program will run until end of file or until interrupted by the user. Usage is as follows:

Usage: m5test infile format [offset]

infile is the file to decode

58

format is the format of the data

offset (optional) is the number of bytes into the file to start decoding

Example: m5test sample.vlba VLBA1 2-256-8-2

See the documentation for m5d for information on specifying the data format.

6.55 m5time(package : mark5access)

Program m5time decodes the time of the beginning of a Mark4, VLBA, or Mark5B datastream and prints
the result in integer MJD and UT hours, minutes, seconds to the screen.

Usage: m5time infile format

infile is the file to decode

format is the format of the data‘

6.56 m5timeseries (package : mark5access)

Program m5timeseries produces a power measurments for each of channel of a baseband data file, averaging
over a specified time interval.

Usage: m5timeseries infile format tint ntime outfile [offset]

infile is the file to decode

format is the format of the data‘

tint is the integration time per sample in milliseconds

ntime is the number of samples to generate

outfile is the name of the output file

offset (optional) is the number of bytes into the file to start decoding

Example: m5timeseries sample.vlba VLBA1 2-256-8-2 6.25 8000 sample.series

The output file contains nchan+2 columns of data where nchan is the number of channels in the data
file. The first column is sample number. The second column is time since beginning of series, in seconds.
The remaining columns are power measurements for the channels.

6.57 m5tsys (package : mark5access)

6.58 mk5cat (package : mk5daemon)

This program sends data on a module to standard out. See additional documentation under mk5cp which
operates on similar principles (mk5cat is mk5cp writing to stdout Note that the executable for mk5cat is
identical to that for mk5cp and only the name of the program actually differs.

Usage: mk5cat [options] { bank | VSN } scans

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase verbosity, e.g., print directory to screen

59

bank is either A or B

VSN is a valid 8-character VSN of a loaded module

scans is one or more scan numbers (starting at 1) with scan numbers separated by commas.

Many of the other baseband data utilities documented here such as m5d, m5spec and vmux can take input
from stdin and thus can be mated with mk5cat. Usually a single hyphen (-) as the name of the input file
indicates this to these programs.

Example: mk5cat B PT BB241 No0111 | m5spec - Mark5B-2048-16-2 128 10000 methanol.spec

6.59 mk5control (package : mk5daemon)

mk5control is a program that sends XML messages of type DifxCommand to the mk5daemon programs that
run on the software correlator cluster members. This program is a superset of mk5take and mk5return,
allowing any allowed command to be sent.

Usage: mk5control [options] command unit1 · · · unitN

options can be:

-h or --help : print usage information and exit.

command is the (non-case-sensitive) command to be executed; see list below.

unit is the number of a correlator Mark5 unit, a range, all for all software correlator cluster members,
mark5 for all Mark5 units, or swc for all software correlator compute nodes.

Example 1: mk5control stopmark5a 07 08 09 11 14

Example 2: mk5control resetmark5 14-24

Example 3: mk5control startmark5a mark5

The list of supported command types is below. All commands are not case sensitive.

• GetVSN Request a Mark5Status XML document to be multicast from the unit

• ResetMark5 Execute SSReset and ssopen; this cures many/most mark5 hangs

• Clear Clear the stat of the Mark5 unit and get the VSNs, can be dangerous if other programs are
currently using the Streamstor card

• Reboot Reboot the machine

• Poweroff Shut down the machine

• StopMk5Daemon Stop the mk5daemon program; you probably never need to do this

• GetDir Extract the directory from the modules in both banks and save to files in $MARK5 DIR PATH

• GetDirA Same as above, but look only at bank A

• GetDirB Same as above, but look only at bank B

• StopDir Stop a directory read that is in progress

• KillMpifxcorr Send sigkill (like kill -9) to all processes on machine called mpifxcorr

60

• Copy Copy data from a module to files in a provided directory. At least three parameters must be
provided that match the parameters of mk5cp. Because of the way mk5control parses the command
line, the word copy and the parameters must all be enclosed in quotes.

• StopCopy Stop a data copy process

• GetVer Request send of a DifxMessageMk5Version XML message

• mountXX Cause Linux device /dev/sdXX to be mounted on /mnt/usb

• umount Cause /mnt/usb to be unmounted

• Test Used in debugging — for developers only

6.60 mk5cp (package : mk5daemon)

Program mk5cp copies baseband VLBI data from a module to a file somewhere on the operating system
filesystem, perhaps an external USB disk. This program is often started using mk5control to tell the
instance of mk5daemon running on the desired Mark5 unit to start the copy. Status information is multicast
via a Mark5StatusMessage document.

Usage: mk5cp [options] { bank | VSN } scans outputDirectory

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase verbosity: print directory to screen

bank is either A or B

VSN is a valid 8-character VSN of a loaded module

scans is one or more scan numbers (starting at 1) with scan numbers separated by commas. No spaces
are allowed in the list. A range can be specified with a hyphen (see examples). Alternatively, a scan
name, or portion thereof, can be specified. When a partial scan is provided, any scan name matching
that partial scan name will be copied. The scans parameter can also take either a time range (two
floating point modified Julian Days connected with an underscore, or a byte range (must be a multiple
of 4) via two integers separated by an underscore, or a byte start and a length can be specified with
two integers separated by a plus sign.

outputDirectory is the directory to which files will be copied. Make sure the destination directory
exists before running this program and make sure sufficient free space remains on that filesystem. If
the outputDirectory parameter is set to - (the hyphen), data will go to stdout. Another utility called
mk5cat is derived from this behavior.

Example 1: mk5cp NRAO-123 4 /mnt/usb/WaltersProject

Example 2: mk5cp A 1,2,3 /tmp

Example 3: mk5cp B BC120A /mnt/usb/BC120A/PT

Example 4: mk5cp NRAO+255 6-12 /tmp

Example 5: mk5cp NRAO+255 123123100 124123100 /tmp

Example 6: mk5cp NRAO+255 54327.13124 54327.15124 /tmp

Example 7: mk5cp NRAO+322 123123100+1000000 /tmp

61

6.61 mk5daemon (package : mk5daemon)

mk5daemon is a program that started automatically at boot time on all of the software correlator cluster nodes
(not only the Mark5 units!) that performs a number of operations in support of the software correlator.

The functions that mk5daemon performs are:

• Logging

All received multicast messages, significant internal functions, and interactions of the Mark5A program
are logged to human readable log files. These log files are restarted at the beginning of each day. By
default these log files are saved in /tmp.

• High level control of Mark5 units

The Mark5A program (written by Haystack) is the principle program used to access the Mark5 systems
at the VLBA stations and the hardware correlator. DiFX directly accesses the Streamstor card via a
library level programming interface. Since only one program is allowed to do this (or face a crash of
varying degree of seriousness), access to the Streamstor card must be carefully managed. One function
of mk5daemon is to maintain knowledge of who “owns” the Streamstor card at a given time to prevent
conflicts. The starting and stopping of the Mark5A program can be requested by two messages of type
DifxCommand : startmark5a and stopmark5a. When these commands are received by mk5daemon, the
requested action is taken unless Streamstor conflict is likely. This type of command and others can be
sent to mk5daemon with the mk5control program (§6.59).

• Low level control of Mark5C units

This program exposes a VLBI Standard Interface (VSI) over TCP port 2620 that very closely emulates
equivalent functionality of the Mark5C Data Recording System (DRS) program provided by Haystack
observatory. The implementation of the DRS command set is not complete but is sufficient for monitor
and control at record time. At the time of writing this program is used in lieu of DRS at the two Mark5C
units provided by USNO.

• CPU, memory, and network monitoring

Every 10 seconds, mk5daemon extracts data from the /proc directory to get information about the
CPU load, memory usage, and network traffic. These numbers are multicast in a DifxLoad message
and logged.

• Module VSN and state determination

Receipt of a multicast getvsn command will result in mk5daemon multicasting out a Mark5Status

message containing information on the VSNs of the inserted modules as well as the state of the Mark5
unit. When Mark5A is running, a socket is opened to this program and the bank set? query is issued,
which returns the VSNs, regardless of the activity. When Mark5A is not running, mk5daemon either
directly determines the VSNs through a Streamstor API library call if the Mark5 unit is idle, or doesn’t
respond if the Mark5 unit is busy. With each Mark5Status message that is multicast from mk5daemon

the state of the Mark5 unit is included. See §8 for details on these XML messages.

• Starting of mpifxcorr

If mk5daemon is started with the -H or --head-node option, it will be allowed to start new correlations.
A correlation will be started when a difxStart message is received if it passes some minor sanity
checks. Since mk5daemon runs as root, it has the capability of changing file ownerships. By default,
the output files from mpifxcorr and difxlog will have their ownership and permissions changed to
match those of the .input file.

Normally mk5daemon is started automatically, either by /etc/rc.local or by a script in /etc/init.d .
The command line options supported are:

62

Usage: mk5daemon [options]

options can be:

-h or --help : print usage information and exit

-q or --quiet : be less verbose and don’t mulitcast state

-H or --head-node : give head-node permissions

-m or --isMk5 : force mk5daemon on this host to act as Mark5 regardless of hostname (default
is mark5fx??)

-u userID or --user userID : use userID when executing remote commands (default is ’difx’)

-l logPath or --log-path logPath : put logs in directory logPath, not /tmp

Please be sure not to have multiple instances of mk5daemon running at any one time on any individual
Mark5 or correlator unit!

6.62 mk5dir (package : mark5daemon)

Program mk5dir extracts the directory from a module. Normally one would not call this program directly
but would use the getdir option of mk5control. By default this program will change the disk module
state to played. There is a danger that if this is done with an SDK 9 unit and the disk is later needed in
an SDK 8 unit that it will no longer be readable in the later without a full reset of its VSN. As of April
2014 this program supports decoding of all directory types described by Mark5 Memos 81 (http://www.
haystack.mit.edu/tech/vlbi/mark5/mark5_memos/081.pdf) and 100 (http://www.haystack.mit.edu/
tech/vlbi/mark5/mark5_memos/100.pdf).

Usage: mk5dir [options] { bank | VSN }

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase verbosity: print directory to screen

-f or --force : force directory read even if current

-F or --fast : get format details from new-style directory (Mark5B format only)

-n or --nodms : get directory but don’t change disk module state

-s or --safedms : only change disk module state if SDK 8 unit or new dir type

-d or --dmsforce : proceed with change of module state even if this makes module unreadable
in SDK 8 units

-b b or --begin b : begin with scan number b

-e e or --end e : end with scan number b

-w file or --write file : write directory file file to the module

bank is one of A, B or AB

VSN is a valid 8-character VSN of a loaded module

The resultant directory file will be saved in a file called VSN.dir in the directory pointed to by environment
variable MARK5 DIR PATH .

This program responds to the value of environment variable DEFAULT DMS MASK. This variable should be
an integer representing the state of three bits. mk5dir only responds to the setting of bit 1 (value 2); if this
bit is set, the disk module state will not be updated on directory reading. It is recommended to set this
environment variable at recording stations so auto-erasure of modules does not occur.

In the mode where a specified .dir file is to be written to a Mark5 module directory the VSN must be
provided explicitly (i.e., selecting by bank is not allowed)

63

http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/081.pdf
http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/081.pdf
http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/100.pdf
http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/100.pdf

6.63 mk5erase (package : mark5daemon)

Program mk5erase replaces the functionality of SSErase. It is used to either erase or condition a Mark5
module. It supports SDK9 and earlier revisions of the Conduant API and either legacy or new (see Mark5
memop 81) module directories. Conditioning results are multicast upon conclusion of conditioning, to be
received bt condition watch. Conditioning (which is started with the -c option) causes an entire read/write
cycle of the entire module to be performed. This can require a good fraction of 24 hours to complete. Status
updates and progress are sent every 10 seconds as well. By default the original directory version will be
restored on the module, with zero scans. The version of directory to use can be forced with either the -l or
-n options.

Usage: mk5erase [options] VSN

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase verbosity: print directory to screen

-f or --force : force directory read even if current

-c or --condition : Do full conditioning, not just erasing

-r or --readonly : Perform read-only conditioning

-w or --writeonly : Perform write-only conditioning

-d or --getdata : Save the performance data to a file called VSN.timedata

-l or --legacydir : Put an empty legacy directory on the module when complete

-n or --newdir : Put an empty new style directory on the module when complete

-0 or --nodir : Put a zero-size directory on the module when complete

VSN is a valid 8-character VSN of a loaded module

Note that this program will not run without specifying a legal mounted module VSN. If you wish to erase a
module that has no VSN set, use the vsn program first.
Control-C can be used to safely abort conditioning early. The directory will be left in an indeterminate
state, so use caution when doing this; if conditioning is stopped before completion use the vsn program to
assess and possibly modify the current module state.

6.64 mk5mon (package : difxmessage)

Program mk5mon is a program that listens for mark5Status messages multicast from the Mark5 units and
displays the information; updating the display as new messages are received.

Usage: mk5mon

Make sure the terminal is at least 110 characters wide and is at least as tall in characters as there are
Mark5 units that may transmit information. To quit, use ctrl-C. The columns being displayed are:

1. Mark5 unit name

2. VSN of module in Bank A

3. VSN of module in Bank B

4. State of the Mark5 unit

5. Playback rate, if playing, in Mbps

6. Playback position, in bytes from beginning of module

7. Scan number of data being played, if playing

8. Scan name of data being played, if playing

64

6.65 mk6cp (package : mark6sg)

mk6cp is a wrapper around mk6gather which makes the operation of copying multiple files from a Mark6
module easier.

Usage: mk6cp [options] filematch1 [filematch2 . . .] destination

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase output verbosity

-r or --resume : don’t copy files that exist in the destination path

filematch1 is a shell-style pattern for matching scan names

destination is the output path to place files; needs to start with . or / or end with /

6.66 mk6gather (package : mark6sg)

mk6gather extracts data from a Mark6 module, assembling as necessary the data scattered across the disks
in the module.

Usage: mk6gather [options] template

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase output verbosity

-a or --append : append to existing file; this continues a previous gather

-o outfile or --output outfile : send output to outfile (default is gather.out)

-b bytes or --bytes bytes : stop writing after bytes are written

-s bytes or --skip bytes : skip first bytes of file

template specifies a file list to match, in a shell-style wildcard pattern, such as the name of a scan (e.g.,
BB407A LA No0001)

If more than one file is to be copied, it is best to use the mk6cp (6.65) program instead.

6.67 mk6ls (package : vdifio)

mk6ls looks in the standard Mark6 mountpoint locations (either in /mnt/disks/*/*/data or in the path
pattern set by environment variable $MARK6 ROOT for VDIF formatted files. Found files will be probed and
summarized.

Three printing levels are supported:

• short : Simply prints the file names. The portion of the filename corresponding to the mountpoint
location is excised.

• long : Prints the file names (same as for short), the number of actual files making up the virtual Mark6
file (e.g., scattered across multiple mountpoints), the full size of the virtual file, and an indication of
the completeness of the virtual file set.

• full : Prints the same information as for long followed by details of the files, such as details of the
Mark6 file version, block sizes, packet numbers. This mode is mainly useful for developers with access
to the vdifio source code.

65

Usage: mk6ls [options]

-h or --help : print usage information and exit

-s or --short : print long form output (default)

-l or --long : print long form output

-f or --full : print full information for each file

6.68 mk6mon (package : difxmessage)

6.69 mk6summary (package : mark6sg)

6.70 mk6vmux (package : vdifio)

6.71 mpifxcorr

The core of the DiFX software correlator is the program called mpifxcorr. This program uses Message
Passing Interface (MPI) to exploit parallel computing to make correlation practical on a cluster of ordinary
computers. This program runs on all the machines listed in the .machines file that is passed to mpirun, the
program that starts mpifxcorr. It should be initiated from the cluster head node from within the project
directory. The usage line below is appropriate for use with OpenMPI (§??) and within the DiFX context;
other incantations may provide better results depending on the setup. See the OpenMPI documentation for
more details.

Usage: mpirun -np nProcess --bynode --hostfile [otherOptions] machinesFile mpfixcorr input-
File [options]

nProcess is the number of processes to start; found with wc -l machineFile

machinesFile the .machineFile

inputFile the .input to run; the full path to this file needs to be given, so prepending the file with
‘pwd‘/ is typical

otherOptions can be any additional option to mpirun; startdifx uses the --mca btl ˆudapl,openib
--mca mpi yield when idle 1 to suppress some warning messages and be less aggressive on network-
ing

options are additional options that mpifxcorr can take which include:

-MmonHostname:[monSkip] : hostname of a machine serving as a monitor data server, with
optional value indicating how many records to skip between sends.

-rstartSec : start startSec seconds into the job, writing a new set of files into the visibility directory
(.difx/)

--vgoscomplex : flips sideband of all Complex VDIF stations by complex conjugating the un-
packed Complex VDIF data

Within the DiFX framework, the user should never have to directly start mpifxcorr as this is done more
simply with startdifx or via the DiFX Operator Interface in conjunction with mk5daemon.

66

6.72 oms2v2d (package : vex2difx)

The VLBI scheduling program sched generates a file with extension .oms which is used to populate some
fields in the VLBA database. These fields are usually used to feed the dynamic scheduler but can also be
used to reduce the tedium of transferring information from the sched input file (.key) to the vex2difx

input file .v2d. For simple experiments this resulting .v2d file can be used unedited, but for more typical
experiments editing will be required. The resulting file will have the same file prefix as the input file and
will end with .v2d.

Usage: oms2v2d [options] file.oms

file.oms is an .oms file written by sched

options can be:

-h or --help : print usage information and exit

-f or --force : allow overwrite of output file

Example: oms2v2d bx123.oms

Note: sched now produces a .tv2d file (template vex2difx) that can contain useful information for some
projects (especially multi-phase-center projects), however, this file is not tied to any particular version of
DiFX (or more importantly, version of vex2difx) and thus cannot be guaranteed to be legal. It is thus
suggested to use oms2v2d and transfer over needed information by hand after the fact.

6.73 padVDIF (package : vdifio)

Program padVDIF takes an input VDIF file and inserts additional packets as needed to create a contiguous
without gaps. Newly inserted frames will have the invalid bit set.

Usage: padVDIF infile outfile Mbps [newStartMJD]

infile is the input VDIF file

outfile is the output VDIF file

Mbps is the data rate in megabits/second

newStartMJD is the MJD (with fractional component) to overwrite the times with

Example: padVDIF raw.vdif smooth.vdif 2048

6.74 plotapd (package : SniffPlots)

Program plotapd takes a text file containing sniffer fringe fit results and makes plot files. Separate plots for
Amplitude, Phase and Delay (hence the name suffix “apd”are made for each baseline in the resultant file.
A plot of delay rate is also produced.

This is an interactive command line program; running plotapd will prompt the user for inputs. The
program difxsniff will run plotapd and its sister programs automatically, so usually it won’t be necessary
to run by hand.

The PGPLOT FONT environment variable must be set, otherwise all plot text will be missing.

67

6.75 plotbp (package : SniffPlots)

Program plotbp takes a text file containing sniffer bandpass output files and creates plots. This program
can produce both auto- and cross-correlation data plots.

This is an interactive command line program; running plotbp will prompt the user for inputs. The
program difxsniff will run plotbp and its sister programs automatically, so usually it won’t be necessary
to run by hand.

The PGPLOT FONT environment variable must be set, otherwise all plot text will be missing.

6.76 plotwt (package : SniffPlots)

Program plotwt takes a text file containing sniffer data weights. In this context, a data weight of 0 indicates
complete loss of data and a weight of 1 indicates complete data. Each plotted data point will usually span
many correlator integration periods. A solid dot will be plotted for the mean of these points, and “error
bars” will indicate the range of weights over the averaging period. Note that in some cases where awkward
integration times are used it may be possible for the weight to occasionally exceed 1, as long as the long
running average never does.

This is an interactive command line program; running plotwt will prompt the user for inputs. The
program difxsniff will run plotwt and its sister programs automatically, so usually it won’t be necessary
to run by hand.

The PGPLOT FONT environment variable must be set, otherwise all plot text will be missing.

6.77 printDiFX.py (package : vis2screen)

Program printDiFX prints a summary of the visibility information in a DiFX output file. It loops through
all the records printing some basic info about frequencies, baselines, polarizations, times etc., plus a couple
of selected visibility values from the start and middle of the record, to the screen.

Usage: printDiFX difxfile inputfile

difxfile is the full name of the visibility file in the .difx directory

inputfile is the path to the input file used to generate this difx output

Example: printDiFX example 1.difx/DIFX 55523 025239.s0000.b0000 example 1.input

6.78 printVDIF (package : vdifio)

Program printVDIF loops through a VDIF file inspecting each packet header and printing some basic
summary info (time etc.) to the screen.

Usage: printVDIF vdiffile Mbps

vdiffile is the recorded VDIF file to inspect

Mbps is the data rate in megabits/second

Example: printVDIF example.vdif 256

68

6.79 printVDIFgaps (package : vdifio)

6.80 printVDIFheader (package : vdifio)

Program printVDIFheader is a powerful diagnostic tool that prints details of each VDIF header found in a
VDIF file. All fields of each header, including information in known Extended VDIF Headers (see Sec. ??) are
printed. Three different print formats are allowed: compact short version, detailed long, and hexidecimal
hex.

Usage: printVDIFheader inputFile [inputFrameSize [printLevel]]

inputFile is the input multi-thread VDIF file, or - for stdin

inputFrameSize is the size of one thread’s data frame, including header (for RDBE VDIF data this is
5032)

printLevel describes what is to be printed; one of short, long, or hex

Run this program with no arguments to get some additiona explanation.

6.81 psrflag (package : difxio)

psrflag is a program that reads one or more DiFX filesets and produces a flag table readable by AIPS
UVFLG that contains flags for times when the fringe rate, on a per-baseline basis, resonates with the pulse
period, allowing DC bias to correlate. The pulsar .binconfig file is used to determine the harmomic content
of the pulsar profile.

Usage: psrflag [options] inputFile . . .

inputFile is the input multi-thread VDIF file; multiple may be provided

options can be:

-h or --help : print help information and quit

-v or --verbose : be more verbose in execution

6.82 record5c (package : mark5daemon)

6.83 recover (package : mk5daemon)

recover is a program that wraps the XLRRecover call for convenient use. This replaces the functionality of
the recover= command of the Mark5A program.

Usage: recover [options] type bank

type is the type of recovery to attempt. See below.

bank should be either A or B and is the bank containing the module to address.

options can be:

-h or --help : print usage information and exit

-f or --force : allow overwrite of output file

-v or --verbose : be more verbose in execution

Example: recover -v 2 A

69

There are three possible modes of operation that are selected with the type argument:

0 Fix directory if power failed during recording

1 Allow access to data that might have been overwritten

2 Unerase the module

These recovery attempts will not always be successful.

6.84 reducepoly (package : difxio)

Program reducepoly takes one or more DiFX file sets as input and will modify each fileset’s delay model (.im
file) to have polynomial representations with fewer terms. All polynomials in the ,im file will be reduced,
including the baseline vectors, atmospheric components, azimuth, and elevation. The original .im files will
be overwritten. The main purpose of this program is to evaluate the impact of using different polynomial
orders,

Usage: reducepoly [options] inputFile . . .

inputFile is the input multi-thread VDIF file, or - for stdin; multiple may be provided

options can be:

-h or --help : print help information and quit

-2 : reduce polynomials to two terms

-3 : reduce polynomials to three terms

-4 : reduce polynomials to four terms

-5 : reduce polynomials to five terms

6.85 searchVDIF (package : vdifio)

6.86 splitVDIFbygap (package : vdifio)

6.87 startdifx (package : mpifxcorr)

Starting mpifxcorr generally requires a lengthy command. This inspired the creation of startdifx which
vastly simplifies use of the DiFX correlator. In addition to spawning the mpifxcorr processes, startdifx
can orchestrate some of the preparatory work (for example running calcif2 and genmachines) and option-
ally run difx2fits to create a .FITS file for each job. This program is meant to work within the DiFX
environment and would probably require modification to be useful in other situations.

Usage: startdifx [options][startDelay] input1 [input2 · · ·]

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose

-q or --quiet : be quieter

-f or --force : proceed on files even if correlator output already exists and is up to date

-a or --automachines : run genmachines only if no .machines file exits

-g or --genmachines : run genmachines unconditionally (default)

-n or --nomachines : don’t run genmachines

70

-d or --dont-calc : don’t run calcif even if needed – will skip file

-m or --message : start mpifxcorr by sending difxStart message to mk5daemon

-F or --fits : run difx2fits on output of each job separately

-l or --localhead : use the current host as the headnode, not $DIFX JEAD NODE

--override-version : ignore potential difx version conflicts

-A agent or --agent=agent : call mpirun through agent with filebase as only argument

-M machinesFile or --machines-file=machinesFile : use machinesFile instead of the one ex-
pected based on the job name

startDelay is an optional number of seconds to jump into the job upon start

inputN is a .input file, or its prefix

Example 1: startdifx job1420.000.input

Example 2: startdifx -f -n job1420.000 job1421.000

Example 3: startdifx -F *.input

Environment variables respected:

• DIFX MESSAGE GROUP : multicast group to use (when using -m option), overriding default 224.2.2.1

• DIFX MESSAGE PORT : multicast port to use (when using -m option), overriding default 50200

• DIFX HEAD NODE : when using -m option, this must be set, which specifies which machine will serve as
the head node

• DIFX MPIRUNOPTIONS : used to pass options to the mpirun command

• DIFX CALC PROGRAM : can be used to change the delay model program (default is calcif2); only needed
if model calculations have not been done

• DIFX CALC OPTIONS : used to override options to the delay model program

6.88 statemon (package : difxmessage)

Program statemon listens for multicast messages of the difxStatus variety and simply prints their contents
to the terminal. This is mainly useful for debugging mpifxcorr and any programs responsible for launching
it.

Usage: statemon [options]

options can be:

-h or --help : print usage information and exit

Environment variables respected:

• DIFX MESSAGE GROUP : multicast group to use, overriding default 224.2.2.1

• DIFX MESSAGE PORT : multicast port to use, overriding default 50200

71

6.89 stopmpifxcorr (package : mpifxcorr)

If software correlation is in progress and it is desired to stop it, it is best to gently stop it rather than killing
it abruptly. In most circumstances this can be accomplished with stopmpifxcorr. This program must be
run on the machine running the manager process of the software correlator (usually this is swc000 for the
VLBA). If multiple mpifxcorr processes are found running on a machine, stopmpifxcorr will not proceed
unless the -f option is used.

Usage: stopmpifxcorr [options]

options can be:

-h or --help : print usage information and exit

-f or --first-pid : send stop message to the numerically first process ID found

-q or --quiet : don’t produce much output

6.90 stripVDIF (package : vdifio)

Program stripVDIF strips network headers from a VDIF format basebad data file (e.g., captured from
wireshark) and dumps a pure VDIF stream.

Usage: stripVDIF infile outfile [skipbytesfront [skipbytesback [skipbytesinitial]]]

infile is the input VDIF file

outfile is the output VDIF file

skipbytesfront is the number of bytes to skip over before each frame (default is 54)

skipbytesback is the number of bytes to skip over after each frame (default is 4)

skipbytesinitial is the number of bytes to skip over only once after opening the file (default is 28)

Example: stripVDIF vdif.wireshark vdif.pure 54 4 28

6.91 tabulatedelays (package : difxio)

Program tabulatedelays takes one or more DiFX filesets and produces a text file containing, for each scan,
a table of interferometer delays (µs) and rate (µs/s) based on the values in the .im file at a cadence of one
entry every 8 seconds. Based on command line options values other than the delay can be extracted and
tabulated. The details of the output files are documented in comments at the top of the output file.

Usage: tabulatedelays [options] inputFile . . .

inputFile is the input multi-thread VDIF file, or - for stdin; multiple may be provided

options can be:

-h or --help : print help information and quit

--az : print azimuth (deg) and azimuth rate (deg/s) instead of delay, rate

--el : print elevation (deg) and azimuth rate (deg/s) instead of delay, rate

--dry : print the dry component of atmospheric delay (µs) instead of delay, rate

--wet : print the wet component of atmospheric delay (µs) instead of delay, rate

--uvw : print the antenna-based baseline coordinates (x, y, z) (meters) instead of delay, rate

72

--clock : print the clock offset (µs) and rate (µs/s) instead of delay, rate

--perint : print values at the center of every integration rather than every 8s

--addclock : include clock offset/rate in printed delay/rate values

This program reads through one or more difx datasets and evaluates delay polynomials in the .im files
on a regular time grid (every 8 seconds). Delays and rates are both calculated. Output should be self
explanatory. Plotting utilities such as gnuplot can be used directly on the output.

When operating without --perint, the entirety of the delay polynomials are plotted, even exceeding
the time range of the scans to which they belong. Comments in the output separate scans cleanly. When
--perint is used, only the time covered by the scans is output.

Sign conventions:

• Delay: a positive delay indicates wavefront arrival at the station before wavefront arrival at earth
center. The delay includes contribution from wet and dry atmosphere components.

• Rate: simply the time derivative of Delay.

• Clock Offset: sign convention is opposite that of .vex "clock early" parameter; a positive clock
offset indicates slow station clock. The sum of Clock Offset and Delay is the total correlator delay.

• Clock Rate: simply the time derivative of Clock Offset.

6.92 testdifxinput (package : difxio)

This program was intended mainly for helping debug parsing of .input files and associated other files. It
turned out to be useful as a general tool to investigate the contents of such files. When multiple input files
are provided on the command line merging of the resultant data structures is attempted. Two output files
are created when run: input.out and calc.out. These files should closely resemble the input files if the
parsing was done properly.

Usage: testdifxinput [options] inputFilePrefix1 [inputFilePrefix2 · · ·]

options can be:

-v or --verbose : be a bit more verbose

-h or --help : print help information and quit

inputFilePrefixn is the base name of an input file

6.93 testdifxmessagereceive(package : difxmessage)

Test program testdifxmessagereceive captures multicast DiFX messages and prints them to the screen.
Both the raw XML is shown and the decoded values. It is mostly useful as a tool for examining the correctness
of the multicast messages that are broadcast and is not intended to be part of an operational system. There
is a special binary mode which instead listens for the multicast high time resolution autocorrelations. In this
mode, only a terse summary of what is received is printed (see the source code for more information).

Usage: testdifxmessagereceive [options] [type]

options can be:

-h or --help : print help information

-b or --binary : generate output based on binary records

type is the kind of message to capture (not for use with binary records):

73

1. DifxLoadMessage

2. DifxAlertMessage

3. Mark5StatusMessage

4. DifxStatusMessage

5. DifxInfoMessage

6. DifxDatastreamMessage

7. DifxCommand

8. DifxParameter

9. DifxStart

10. DifxStop

11. Mark5VersionMessage

12. Mark5ConditionMessage

13. DifxTransientMessage

If type is not provided, all message types will be captured.

6.94 testmod (package : mk5daemon)

testmod is a program that is used to perform read and write tests on Mark5 modules. It is meant as a
replacement of the ResetModule program that relies on the Mark5A program which is being phased out of
VLBA operations. Read-only tests can be performed without risk of erasing astronomical data recorded
on the disks. The more invasive write-read tests (which are the default) will erase all preexisting data! A
matrix of numbers similar to what is produced by ResetModule or SSerase in condition mode, but with
statistics from a much smaller volume of reading/writing is produced. Usually badly performing disks will
occur in pairs with both bad disks belonging to the same bus (e.g., disks 0 and 1, 2 and 3, 4 and 5, or 6 and
7). Badly performing drives should have their directory files .dir (see § 7.17) updated by hand to include
RT at the end of the top line.

Usage: testmod [options] bank

options can be:

-h or --help : print usage information and exit

-v or --verbose : produce more informative/diagnostic output; -v -v for even more

-f or --force : continue to produce files despite warnings

-r or --readonly : Perform read-only test

-R or --realtime : Switches to real-time mode (see below)

-d or --skipdircheck : Disable directory checking (see below)

-S or --speed : Disable correctness testing to better test throughput

-n n or --nrep n : Repeat the test n times (default is 2)

-s s or --blocksize s : Read and write bytes at a time (default is 10 MB)

-b b or --nblock b : Perform b reads per test (default is 50)

-p p or --pointer p : Start read-only tests at byte position p

-o file or --dirfile file : Write the module directory to file file

bank is the Mark5 bank containing the disk to be studied (A or B)

Many modules being tested are perhaps damaged in some way and may require the -R and/or -d options
above. Is is generally safe to use these options, but the diagnostic power of this program may be reduced in
cases where some drives are intrinsically slow, but still produce valid data.

74

6.95 testseqnumbers (package : difxmessage)

Program testseqnumbers is a utility to listen for DiFX multicast messages and identify any that come with
a sequence number that is not sequential. This is a good way to identify possible packet loss or duplication
on a DiFX cluster network.

Usage: testseqnumbers [options]

options can be:

-h or --help : print usage information and exit

-v or --verbose : produce more output; -v -v for even more

If run without the -v option, only unexpected packets will be noted. If run with one -v flag, each received
packet will be identified with a period being written to the screen. If run with 2 -v flags, each packet received
will have its source and sequence number printed.

6.96 vdif2to8 (package : vdifio)

Program vdifb2to8 takes a 2-but sampled VDIF stream and reencodes it as 8-bit samples. It should work
on any form of VDIF with 2 bits per sample (2+2 bits complex). It is anticipated that any 8-bit decoder
will be performed with linear level spacings, unlike the case for 2-bit samples which use a high to low ratio of
3.3359 to minimized quantization noise. Given this anticipation the levels chosen in the output 8-bit stream
correspond to levels of 35.5 and 118.5 counts for the low and high states respectively. These levels lead to
a ratio as close to 3.3359 as possible. The 0.5 offset comes about from assuming that the 256 output states
are centered on zero and thus range from -127.5 . . . -0.5, 0.5 . . . 127.5. Extra bytes in the input stream (not
corresponding to valid VDIF frames) will be excised but invalid frames (as marked with the invalid bit) will
be retained and encoded to 8 bits.

Usage: vdif2to8 inputFile frameSize outputFile

inputFile is the file to read (2 bits per sample)

frameSize is the size of the VDIF frames including frame headers (5032 for VLBA or VLA VDIF data)

outputFile is the output file (8 bits sper sample)

Example: vdif2to8 input.vdif 5032 output.vdif

6.97 vdifbstate (package : vdifio)

Program vdifbstate will perform state counts on a multi-thread VDIF baseband data file.

Usage: vdifbstate file frameSize dataRate threadlist nFrames [offset]

file is the file to decode

frameSize is the size of the VDIF frames including frame headers (5032 for VLBA or VLA VDIF data)

dataRate is the file data rate, measured in Mbps, not including frame headers

threadList is a comma-separated list of thread ids to decode

nFrames is the number of data frames (typically a few kB in size) to decode

offset is the number of bytes into the file to start decoding

75

Example: vdifbstate sample.vdif 5032 1024 1,2,3,4 100

Notes:

1. See documentation for m5b for details on specifying the data format.

2. Only real-sampled data with 1 or 2 bits per sample is supported at this time.

3. If a non-power-of-two number of threads is requested, extra channels will be invented to pad out the
next power of two. Data in these extra channels has undefined qualities.

6.98 vdifChanSelect (package : vdifio)

6.99 vdifd (package : vdifio)

Program vdifd takes a multi-thread VDIF file and decodes some samples. It is implemented as a python
script that makes use of vmux and m5d to do most of the work. It is thus a good program to study to
understand how vmux can be used. This program takes as command line input the name of a file containing
(or thought to be containing) multi-thread VDIF baseband data, information about the VDIF stream, and
the number of samples per baseband to decode. Optionally a starting file offset can be supplied. If the data
can be decoded correctly, information about the data will be printed to the screen along with a table of
decoded data. The output values, -3, -1, 1, or 3 for valid data, are printed in nchan columns. Data that
cannot be decoded (either due to data replacement headers, data fill pattern replacing the actual data after
unloading from a Mark5 module, or identified via the VDIF invalid bit) will show as 0. It should be invoked
with the following parameters:

Usage: vdifd file frameSize dataRate threadlist n [offset]

file is the file to decode

frameSize is the size of the VDIF frames including frame headers (5032 for VLBA or VLA VDIF data)

dataRate is the file data rate, measured in Mbps, not including frame headers

threadList is a comma-separated list of thread ids to decode

n is the number of samples to decode

offset is the number of bytes into the file to start decoding (default is 0)

Example: vdifd sample.vdif 5032 1024 1,2,3,4 24

In the above example, a stream consisting of 4 channels, each with 64 MHz bandwidth and 2 bits per
sample and with thread ids 1, 2, 3 and 4 are to be decoded. If the thread ids were to be permuted, the
decoded output data would be permuted in the same manner.
Notes:

1. At this time only 2-bit real-valued data can be properly decoded.

2. If a non-power-of-two number of threads is requested, extra channels will be invented to pad out the
next power of two. Data in these extra channels has undefined qualities.

76

6.100 vdiffold (package : vdifio)

Program vdiffold takes a baseband data stream and integrates the power (formed by squaring the voltage)
in a number of time bins that equally divide a given period. This is a simplifed version of “folding” such
as is used in pulsar processing. A typical use of such functionality would be to investigate the waveform of
the switched power injected into the receiver for calibration. This program has found considerable utility in
determining time offsets between the sample clock and formatter time (modulo the period of the calibration
cycle).

In the case of 2-bit sampling a non-linear correction is applied before results are written to a file. This
correction takes the form

P =
1(

erf−1

(
P̂−v2

high

1−v2
high

))2 , (3)

where P is a value proportional to true power and P̂ is the value obtained by calculating
〈
v̂2
〉

when the
bitstream is reproduced with values v̂ ∈ (−vhigh,−1, 1, vhigh). This non-linear correction can be turned off
by setting nbin to a negative value. Note that this program is not useful for 1-bit quantized data.

The program should be used as follows:

Usage: vdiffold infile frameSize dataRate threadlist nbin nchunk freq outfile [offset]

infile is the file to decode

frameSize is the size of the VDIF frames including frame headers (5032 for VLBA or VLA VDIF data)

dataRate is the file data rate, measured in Mbps, not including frame headers

threadList is a comma-separated list of thread ids to decode

nbin is the number of bins to calculate per period; if negative, power correction is not performed and
the absolute value of nbin is used

nchunk is the number of 10000 sample chunks to operate on

freq is the reciprocal of the period to be observed (Hz)

outfile is the name of the output file

offset (optional) is the number of bytes into the file to start decoding

Example: vdiffold sample.vdif 5032 1024 1,2,3,4 128 10000 80 sample.fold

The output file will contain nchan+1 columns where nchan is the number of baseband channels in the
data stream. The first column contains the time (seconds) within the period. Each remaining column is
folded power for one baseband channel. If nbin is positive and the data is 2-bit quantized, the scaling is such
that

〈
v2
〉

= σ2 yields a power reading of 1.0, for sampler threshold σ. Optimal signal to noise ratio occurs
for a value of about 1.03. For non 2-bit quantization, the power will be in units of reconstituted counts2.
Notes:

1. At this time only 2-bit real-valued data can be properly decoded.

2. If a non-power-of-two number of threads is requested, extra channels will be invented to pad out the
next power of two. Data in these extra channels has undefined qualities.

3. The output columns are in the same order as the thread id list. Thus, you can rearrange the output
order by changing the order of the thread list. This enables reordering of data so that polarization
pairs occur consecutively, allowing more sensible cross-correlation columns.

77

6.101 vdifspec (package : vdifio)

Program vdifspec forms total power spectra for each baseband channel in the data, including cross spectra
for polarization pairs, assuming data is in alternating polarization pairs (if not, the cross spectra should make
no sense, but they are formed anyway). The results are written to a text file with the following columns:
Column 1 is the frequency offset from baseband for each channel; Columns 2 to nchan+1 are the total power
spectra for each baseband channel; Columns nchan+2 to 4×nchan+1 contain, in pairs, the amplitude and
phase of the cross spectra for each pair of channels. It should be invoked with the following parameters:

Usage: vdifspec infile frameSize dataRate threadlist npoint n outfile [offset]

infile is the file to decode

frameSize is the size of the VDIF frames including frame headers (5032 for VLBA or VLA VDIF data)

dataRate is the file data rate, measured in Mbps, not including frame headers

threadList is a comma-separated list of thread ids to decode

npoint is the number of points to calculate for each spectrum

n is the number of FFT frames to include in the calculation

outfile is the name of the output file

offset (optional) is the number of bytes into the file to start decoding

Example: vdifspec sample.vdif 5032 1024 1,2,3,4 256 1000 vlba.spec

Notes:

1. At this time only 2-bit real-valued data can be properly decoded.

2. If a non-power-of-two number of threads is requested, extra channels will be invented to pad out the
next power of two. Data in these extra channels has undefined qualities.

3. The output columns are in the same order as the thread id list. Thus, you can rearrange the output
order by changing the order of the thread list. This enables reordering of data so that polarization
pairs occur consecutively, allowing more sensible cross-correlation columns.

6.102 vex2difx

vex2difx is a program that takes a .vex files (such as one produced by sched with various tables based on
observe-time data appended, probably by db2vex in the case of VLBA operations) and a .v2d configuration
file (see §7.42) and generates one or more .input and .calc file pairs for use with the DiFX correlator. Note
specifically that .ovex files, as used at many/most Mark4 correlators, are not supported. vex2difx, along
with calcif2, supercedes the functionality of vex2config and vex2model, two programs that were widely
used but never fully integrated into the VLBA’s software chain. Don’t forget that oms2v2d can be used to
create a valid baseline .v2d file from the .oms file made by sched, perhaps saving some time.

The following guiding principles drove the design of vex2difx:

1. The output files should never need to be hand edited

2. Simple experiments should not require complicated configuration

3. All features implemented by mpifxcorr should be accessible

4. All experiments expressible by vex should be supported

78

5. The configuration file should be human and machine friendly

6. Command line arguments should not influence the processing of the vex file

Note that not all of these ideals have been completely reached as of now. It is not the intention of the
developer to guess all possible future needs of this program. Most new features will be easy to implement
so send a message to the difx-users mailing list or file a JIRA [9] bug tracking ticket for requests.

Usage: vex2difx [options] v2dFile

options can be:

-h or --help : print usage information and exit

-o or --output : write a configuration file called v2dFile.params (see §7.34) as output

-v or --verbose : produce more informative/diagnostic output; -v -v for even more

-d or --delete-old : delete old output from same .v2d file

-f or --force : continue to produce files despite warnings

-s or --strict : treat some warnings as errors and quit (default)

v2dFile is a .v2d file (see §7.42) that controls the operation of this program; the filename cannot
contain underscore characters

Example: vex2difx bx123.v2d

6.102.1 VDIF issues

Unlike for the other formats, VDIF does not make use of the $TRACKS section for numeric assignment of
channel. Instead the channels as listed in the $FREQ section are sorted alphabetically by their link name
(usually something like Ch01. The alphabetical list is matched against the thread-channel order where the
threads are listed in numeric order; the “thread index” takes precedence over the “channel index”. The
track frame format parameter of the $TRACKS section is still required.

6.102.2 Mark5B issues

The Mark5B format, including its 2048 Mbps extension, is now supported by vex2difx. The .vex file
track assignments for Mark5B format has never been formally documented. vex2difx has adopted the track
assignment convention used by Haystack. Formally speaking, Mark5B has no tracks. Instead it stores up to
32 bitstreams in 32 bit words. The concept of fanout is no longer used with Mark5B. Instead, the equivalent
operation of spreading one bitstream among 1 or more bits in each 32 bit word is performed automatically.
Thus to specify a Mark5B mode, only three numbers are needed: Total data bit rate (excluding frame
headers), number of channels, and number of bits per sample (1 or 2). The number of bitstreams is the
product of channels and bits.

The $TRACKS section of the vex file is used to convey the bitstream assignments. Individually, the sign and
magnitude bits for each channel are specified with fanout def statements. In unfortunate correspondence
with existing practice, 2 is the first numbered bitstream and 33 is the highest. In 2-bit mode, all sign bits
must be assigned to even numbered bitstreams and the corresponding magnitude bit must be assigned to
the next highest bitstream. To indicate that the data is in Mark5B format, one must either ensure that a
statement of the form

track frame format = MARK5B;

must be present in the appropriate $TRACKS section or
format = MARK5B

must be present in each appropriate ANTENNA section of the .v2d file. As a concrete example, a $TRACKS

section may resemble:

79

$TRACKS;

def Mk34112-XX01_full;

fanout_def = A : &Ch01 : sign : 1 : 02;

fanout_def = A : &Ch01 : mag : 1 : 03;

fanout_def = A : &Ch02 : sign : 1 : 04;

fanout_def = A : &Ch02 : mag : 1 : 05;

fanout_def = A : &Ch03 : sign : 1 : 06;

.

.

.

fanout_def = A : &Ch15 : mag : 1 : 31;

fanout_def = A : &Ch16 : sign : 1 : 32;

fanout_def = A : &Ch16 : mag : 1 : 33;

track_frame_format = MARK5B;

enddef;

6.102.3 Media specification

vex2difx allows .input file generation for two types of media. A single .input file can have different media
types for different stations. Ensuring that media has been specified is important as antennas with no media
will be dropped from correlation. The default media choice is Mark5 modules. The TAPELOG OBS table in
the input vex file should list the time ranges valid for each module. Jobs will be split at Mark5 module
boundaries; that is, a single job can only support a single Mark5 unit per station. All stations using Mark5
modules will have DATA SOURCE set to MODULE in .input files. If file-based correlation is to be performed,
the TAPELOG OBS table is not needed and the burden of specifying media is moved to the .v2d file. The files
to correlate are specified separately for each antenna in an ANTENNA block. Note when specifying filenames,
it is up to the user to ensure that full and proper paths to each file are provided and that the computer
running the datastream for each antenna can see that file. Two keywords are used to specify data files. They
are not mutually exclusive but it is not recommended to use both for the same antenna. The first is file.
The value assigned to file is one or more (comma separated) file names. It is okay to have multiple file
keywords per antenna; all files supplied will be stored in the same order internally. The second keyword is
filelist which takes a single argument, which is a file containing the list of files to read. The file pointed
to by filelist only needs to be visible to vex2difx, not the software correlator nodes. This file contains
a list of file names and optionally start and stop MJD times. Comments can be started with a # and are
ended by the end-of-line character. Like for the file keyword, the file names listed must be in time order,
even if start and stop MJD values are supplied. An example file as supplied to filelist is below:

This is a comment. File list for MK for project BX123

/data/mk/bx123.001.m5a 54322.452112 54322.511304

/data/mk/bx123.002.m5a 54322.512012 54322.514121 # a short scan

/data/mk/bx123.003.m5a 54322.766323 54322.812311

If times for a file are supplied, the file will be included in the .input file DATA TABLE only if the file
time range overlaps with the .input file time range. If not supplied, the file will be included regardless of
the .input file time range, which could incur a large performance problem.

A few sample ANTENNA blocks are shown below:

ANTENNA MK

{

filelist=bx123.filelist.mk

}

80

ANTENNA OV { file=/data/ov/bx123.001.m5a,

/data/ov/bx123.002.m5a,

/data/ov/bx123.003.m5a }

ANTENNA PT { file=/data/pt/bx123.003.m5a } # recording started late here

6.102.4 Pulsars

Some information, including example .v2d sections, on setting up pulsar correlation can be found in §4.
You may find additional information at http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/

vex2difx .

6.103 vexpeek (package : vex2difx)

Program vexpeek takes a vex file as input and sends to stdout the experiment name, segment, and a list of
antennas and the MJD times that they were included in the observation. This program is mainly intended
to be called from python program db2vex which needs to know a little about the file before appending the
CLOCK and TAPELOG OBS tables. The VLBA operations system relies on such functionality but there is
no reason other operations couldn’t use this. This program uses the same parsing infrastructure as vex2difx
so the warnings that may be produced and sent to stderr in running vex2difx will also do so with vexpeek.
Thus, when db2vex is run some of these error messages may be seen.

Usage: vexpeek [options] vexFile

options can be:

-h or --help : print usage information and exit

-v or --verbose : print decoded version of vexFile to screen

-f or --format : add per-antenna format description to output

-b or --bands : print list of bands used by vexFile

-u or --diskusage : add per-antenna disk usage to output

-s or --scans : print list of scans and antennas used by each

vexFile is the vex format file to be inspected.

6.104 vlog (package : vex2difx)

Program vlog takes as input a calibration file (cal.vlba, §7.10). This file is parsed to produce four files
containing formatted arrays that are convenient for use in the construction of FITS tables: flag, pcal,
tsys, and weather (§7.24, §7.35, §7.39 and §7.40). This program is named after AIPS task vlog that does
nearly the same thing.

Usage: vlog calFile [antennaList]

calFile is the cal.vlba file produced by tsm to be processed.

antennaList is an optional comma-separated list of antennas to process. If omitted, all antennas with
calibration data will be processed.

Running with no command line arguments will print usage information to the terminal and exit.

81

http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/vex2difx
http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/vex2difx

6.105 vmux (package : vdifio)

Program vmux takes a VDIF file with multiple threads of one channel each and multiplexes the data into a
new VDIF file consisting of a single thread containing all the channels. In the case that a non-power-of-two
number of channels are contained in the input file (or equivalently, a non-power-of-two number of threads
are specified on the command line), the next power of two will be selected as the number of channels in the
output thread and any unused channel slots will contain random data.

Usage: vmux [options] inputFile inputFrameSize framesPerSecond threadList outputFile [offset [chunkSize]]

inputFile is the input multi-thread VDIF file, or - for stdin

inputFrameSize is the size of one thread’s data frame, including header (for RDBE VDIF data this is
5032)

framesPerSecond is the number of frames per second in the input file for each thread (and is thus the
number of output frames per second as well)

threadList is a comma-separated list of integers in range 0 to 1023; the order of the numbers is significant
and dictates the order of channels in the output data

outputFile is the name of the output, single-thread VDIF file, or - for stdout

offset is an optional offset into the input file (in bytes)

chunkSize is (roughly) how many bytes to operate on at a time (default is 2000000)

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose in execution

-q or --quiet : be less verbose in execution

-f f or --fanout f : set fanout factor to f

-e or --EDV4 : convert VDIF extended data version to EDV4 (default)

-n or --noEDV4 : don’t convert VDIF extended data version to EDV4

The concept of fanout applies to certain variants of VDIF data where one logical sampled channel is
interleaved multiple threads. Certain modes of the DBBC3 makes use of this mode. See Sec. ?? for details.

VDIF Extended Data Version (EDV) 4 is used to contain per-channel validity flags within a multi-channel
VDIF file. See Sec. ?? for details.

6.106 vsn (package : mk5daemon)

Program vsn is used to check or set the Volume Serial Number (VSN), the write protect state, and the
Disk Module State (DMS) of a module. This program can not be used when the Mark5 unit is being used
for something else. You must be logged into the Mark5 unit that contains the module to inspect/change.
In addition to displaying the VSN of the module, this utility will list information about each disk in the
module. The columns displayed are:

1. Disk number: in the range 0 to 7.

2. Drive model: the model number of the disk.

3. Serial number: the serial number of the disk (in parentheses).

4. Drive model revision number: addition model information.

82

5. SMART capable: 1 indicates SMART information is available; 0 otherwise.

6. SMART state: (only valid if SMART capable) 1 indicates good health.

Note that the drive model, serial number and revision number can have spaces making it hard to tell
when one field start and the next begins. Thus the serial number is contained within parentheses to make
this clear.

Usage: vsn [options] bank [newVSN]

options can be:

-h or --help : print usage information and exit

-f or --force : proceed without asking

-v or --verbose : be more verbose in operation

-p or --played : set DMS to played

-r or --recorded : set DMS to recorded

-e or --erased : set DMS to erased

-w or --writeprotect : set write protection

-u or --unwriteprotect : clear write protection

-s or --smart : Get S.M.A.R.T. data from disks and write to file VSN.smart)

bank is the Mark5 unit bank to look at (must be A or B)

newVSN is the new name to assign to the module and must be a legal VSN

Example 1: show VSN: vsn A

Example 2: set VSN: vsn A NRAO+456

If you get a message such as “Watchdog caught a hang-up executing . . . ” that means access to the module
failed. This could indicate a bad module. The module should be reinserted (perhaps in a different bank or
unit) and the unit rebooted before coming to a firm conclusion.

6.107 vsum (package : vdifio)

Program vsum prints a summary of one or more VDIF files, printing such information as list of threads
found, collectively, in the first and last few MB of the file, the VDIF epoch and other time information, and
packet size. If the data is not recognized as VDIF, an error code will be printed; see below for the list of
codes and their meanings. Legacy format VDIF data is not supported.

Usage: vsum [options] file1 [file2 [. . .]]

file1 . . . is/are the VDIF file(s) to summarize

options can be:

-h or --help : print usage information and exit

-s or --shortsum : print one-line summary per file

-6 or --mark6 : interpret provided file names as Mark6 scans

--allmark6 : summarize all files found on mounted Mark6 modules

83

If the -6 or --mark6 or --allmark6 option is used, it is assumed that the files are to be found in their
expected location, which could be altered by an environment variable. See sec ?? for more details.

If the summary operation failed for a file, one of the following error codes will be returned:

-1 The file size could not be determined
-2 The file could not be opened
-3 Memory allocation failure
-4 File read failed
-5 Frame size could not be determined
-6 First frame could not be found
-7 Seek to near-end-of-file failed
-8 Read at end of file failed
-9 A valid frame at the end of the file could not be found

The -s or --shortsum option produces output that can be used directly by vex2difx as a file list.

6.108 zerocorr (package : mark5access)

Program zerocorr is intended to cross correlate data with zero time delay (and a window determined by
the spectral resolution) between two recordings made at the same station. It is possible to correlate data
observed in different formats and even mis-matched bandpasses, through the construction of a file describing
the details of the single sub-band that is to be correlated.

Usage: zerocorr [options] confFile

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose in operation

confFile is a file describing the correlation parameters

Example: zeroconf td006.zc

See documentation on confFile (or .zc file) in section 7.46. Output data documentation can be found
for .vis files in section 7.45 and for .lag files in section 7.29.

7 Description of various files

In the descriptions that follow, the locations of some files is given as /home/vlbiobs, meaning the directory
/home/vlbiobs/astronomy/mmmyy/project or one of its subdirectories (this is VLBA-centric). Here mm-
myy is the month and year of the project’s observation (i.e., jan08) and project is the full project name,
with segment, in lower case, such as bw088n. In what follows, the “software correlator project directory”
(sometimes “project directory”) refers to the directory from which software correlation is to proceed. File
names beginning with a period (e.g., .acb) represent file name extensions, typically (but not always) to job
file bases, such as job121.000 .

7.1 .aapd

The program apd2antenna (see Sec. 6.1) takes the .apd file (Sec. 7.5 created by difx2fits (Sec. 6.14)
and performs least-squares fits to reference the phase, delay, and rate measurements to a specified reference
antenna.

The first line in the file is obscode: followed by the observation code, e.g., MT831 .
Each subsequent line has the same format with the following fields:

84

Key Units/allowed values Comments
MJD integer ≥ 1 MJD day number corresponding to line
hour ≥ 0.0, < 24.0 hour within day
source name string name of source; no spaces allowed
antenna number integer ≥ 1 antenna table index for first antenna
antenna name string name of antenna 1; no spaces allowed
nBBC integer ≥ 1 number of baseband channels, nBBC

The next four columns are repeated nBBC times
delay ns the fringe fit delay
phase degrees phase of fringe fit peak
rate Hz the fringe fit rate

7.2 .abp

When run with the --bandpass option, difx2fits will create a .bandpass file. This file can be run through
bp2antenna (Sec. 6.3 to convert the baseline-based bandpasses to antenna-based bandpasses.

It is possible that line comments, starting with #, are present in the file.
The first line of the file is obscode: followed by the project code.
A header line starting with Bandpass will signify the start of the data for one antenna for one baseband

channel. Such a line has exactly eight space-separated fields:

1. The keyword Bandpass

2. Zero-based antenna number for the antenna

3. Uppercase antenna code for the antenna

4. Baseband channel number (zero-based)

5. Number of points in the bandpass, Npoint

6. Signed Sum of Local Oscillator (SSLO) for the baseband channel frequency (MHz)

7. Baseband channel bandwidth (MHz)

8. Polarization (typically R, L, H, or V)

Following a header line should be the specified number, Npoint, of data lines, each with three space-
separated values:

1. Sky frequency (MHz)

2. Real part of bandpass at this frequency

3. Imaginary part of bandpass at this frequency

Note that the bandpass is represented as the measurements. The correction factor to flatten the bandpass
would be the complex-valued reciprocal of these measurements.

7.3 .acb

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be accom-
panied by a corresponding .acb file. This file contains auto-correlation spectra for each antenna for each
source. In order to minimize the output data size, spectra for the same source will only be repeated once
per 15 minutes. The file contains many concatenated records. Each record has the spectra for all baseband
channels for a particular antenna and has the following format. Note that no spaces are allowed within any
field. Values in typewriter font without comments are explicit strings that are required.

85

Line(s) Value Units Comments
1 timerange:

MJD integer ≥ 1 MJD day number corresponding to line
start time string e.g., 13h34m22.6s
stop time string e.g., 13h34m52.0s
obscode:

observe code string e.g., MT831
chans:

nchan ≥ 1 number of channels per baseband channel
x

nBBC ≥ 1 number of baseband channels
2 source:

source name string e.g., 0316+413
bandw:

bandwidth MHz baseband channel bandwidth
MHz

3 to 2+nBBC bandfreq:

frequency GHz band edge (SSLO) frequency of baseband channel
GHz polar:

polarization 2 chars e.g. RR or LL
side:

sideband U or L for upper or lower sideband
bbchan:

bbc 0 Currently not used but needed for conformity
3+nBBC to antenna number ≥ 1 antenna table index
2+nBBC(nchan + 1) antenna name string

channel number ≥ 1 = chan + (bbc− 1) · nchan for chan, bbc ≥ 1
amplitude ≥ 0.0

The above are repeated for each auto-correlation spectrum record. This file can be plotted directly with
plotbp or handled more automatically with difxsniff.

7.4 .apc

This file type is nearly identical to the better known .apd file; the name acronym refers to Amplitude Phase
Channel. The amplitude, phase, and rate for the brightest channel is determined for each IF for each solution
interval. When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will
be accompanied by a corresponding .apc file. This file contains channel-based fringe fit solutions typically
every 30 seconds for the entire experiment. These solutions are not of calibration quality but are sufficient
for use in evaluating the data quality.

The first line in the file is the observation code, e.g., MT831 .
Each subsequent line has the same format with the following fields:

86

Key Units/allowed values Comments
MJD integer ≥ 1 MJD day number corresponding to line
hour ≥ 0.0, < 24.0 hour within day
source number integer ≥ 1 source table index
source name string name of source; no spaces allowed
ant1 number integer ≥ 1 antenna table index for first antenna
ant2 number integer ≥ 1 antenna table index for second antenna
ant1 name string name of antenna 1; no spaces allowed
ant2 name string name of antenna 2; no spaces allowed
nBBC integer ≥ 1 number of baseband channels, nBBC

The next four columns are repeated nBBC times
channel ≥ 1, ≤ nchan the strongest channel
amplitude ≥ 0.0 the amplitude of the peak channel
phase degrees phase of the peak channel
rate Hz the channel phase rate

7.5 .apd

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be accom-
panied by a corresponding .apd file. This file contains Amplitude, Phase, Delay (hence the name) and rate
results from fringe fit solutions typically every 30 seconds for the entire experiment. These solutions are not
of calibration quality but are sufficient for use in evaluating the data quality.

The first line in the file is the observation code, e.g., MT831 .
Each subsequent line has the same format with the following fields:

Key Units/allowed values Comments
MJD integer ≥ 1 MJD day number corresponding to line
hour ≥ 0.0, < 24.0 hour within day
source number integer ≥ 1 source table index
source name string name of source; no spaces allowed
ant1 number integer ≥ 1 antenna table index for first antenna
ant2 number integer ≥ 1 antenna table index for second antenna
ant1 name string name of antenna 1; no spaces allowed
ant2 name string name of antenna 2; no spaces allowed
nBBC integer ≥ 1 number of baseband channels, nBBC

The next four columns are repeated nBBC times
delay ns the fringe fit delay
amplitude ≥ 0.0 the amplitude of fringe fit peak
phase degrees phase of fringe fit peak
rate Hz the fringe fit rate

7.6 .bandpass

When run with the --bandpass option, difx2fits will create a .bandpass file. The data in this file is
created after applying the results of the fringe fit process and then averaging over all data. This option
should only be used when it is expected that all of the data being processed is on a source strong enough
for valid fringe fit solutions. The contents of the file complex-valued bandpasses determined on each of the
baselines. In its current form (2023/04/24) only cross-correlations are considered, but the option remains
open to write real-valued autocorrelations as well.

It is possible that line comments, starting with #, are present in the file.
The first line of the file is obscode: followed by the project code.

87

A header line starting with Bandpass will signify the start of the data for one baseline for one baseband
channel. Such a line has exactly ten space-separated fields:

1. The keyword Bandpass

2. Zero-based antenna number for first antenna

3. Zero-based antenna number for second antenna

4. Uppercase antenna code for first antenna

5. Uppercase antenna code for second antenna

6. Baseband channel number (zero-based)

7. Number of points in the bandpass, Npoint

8. Signed Sum of Local Oscillator (SSLO) for the baseband channel frequency (MHz)

9. Baseband channel bandwidth (MHz)

10. Polarization (typically R, L, H, or V)

Following a header line should be the specified number, Npoint, of data lines, each with three space-
separated values:

1. Sky frequency (MHz)

2. Real part of bandpass at this frequency

3. Imaginary part of bandpass at this frequency

Note that the bandpass is represented as the measurements. The correction factor to flatten the bandpass
would be the complex-valued reciprocal of these measurements.

7.7 .binconfig

The .binconfig file is a file created by the user of DiFX and referenced by the .input file to specify pulsar
options. The file uses the standard DiFX input file format and has the following parameters:

Key Units/allowed values Comments
NUM POLYCO FILES integer ≥ 1 Number of polyco files to read (nPoly)

The next row is duplicated nPoly times
POLYCO FILE p string Name of pth polynomial file
NUM PULSAR BINS integer ≥ 1 Number of pulse bins to create (nBin)
SCRUNCH OUTPUT boolean Sum weighted bins? If not, write all bins

The next rows are duplicated nBin times
BIN PHASE END b float 0.0-1.0 Pulsar phase where bin ends
BIN WEIGHT b float ≥ 0.0 Weight to use when scrunching

The start of one bin is equal to the end of the previous bin; bins wrap around phase 1.0. The BIN PHASE
END parameters must be listed in ascending phase order. See Sec. 4 for example usage of .binconfig files.

88

7.8 .bootstrap

The difxbuild installer program begins its process by building an environment based on the contents of a
.bootstrap file. In the simplest case only three parameters are required (version, headnode, and difxbase),
however installations can be customized through the use of several other parameters. The .bootstrap file
is a text file containing zero or one key = value statements on each line. Comments begin with a #.

The parameters specified can include:

• version: which version of difx to install. Currently supported values are DIFX-DEVEL, DIFX-2.1,
and DIFX-2.2. The DIFX VERSION environment varialbe will reflect this value. This parameter is
required.

• headnode: the computer that will be singled out as the head node. The DIFX HEAD NODE environment
variable will reflect this value. This parameter is required.

• difxbase: the top level directory for DiFX software. DiFX-version-independent files will be placed
directly beneath this directory. By default DiFX version specific files will be installed in a subdirectory
of this (see information about the root parameter below). It is okay (and encouraged) to use the
same difxbase for all installed versions as this allows common third-party software to be used. This
parameter is required.

• root: the base directory for DiFX version/label specific files for the primary platform. Secondary
platforms will use the same but with a provided extension (see altplatformX below). If not provided,
this parameter will default to difxbase (or label if specified).

• ipproot: path to the base of the Intel Performance Primitives library. This is IPP version dependent
and may require a bit of trial and error to get right. If this is set to none then an IPP-free DiFX will
be installed. This requires FFTW to be installed. Each architecture can have its own ipproot value.
ipproot specifies the the default; architecture-dependent overrides are specified with a parameter such
as ipprooti686 or ipprootx86 64.

• label: a label used to identify an installation of DiFX. By default it is set equal to the specified
version. Setting it to an alternate value allows multiple installations of the same DiFX version to be
later identifiable. The DIFX LABEL environment variable will reflect this value.

• calcserver: the computer to send RPC model requests to. If not specified, this will default to the
value of the headnode parameter. The CALC SERVER environment variable will reflect this value.

• cflags: default c and c++ compiler flags to use. If not specified, the default of -O2 -Wall -march=core2

will be used.

• pathextra: extra binary search paths to add the the PATH environment variable that is set in the
setup difx script.

• ldextra: extra paths to be added to the LD LIBRARY PATH environment variable that is set in the
setup difx script.

• wrapper: an optional wrapper program that can be used to spawn mpifxcorr. This value gets coded
into the runmpifxcorr.label launcher script. For example, valgrind could be used as the wrapper
program if memory leek checking is desired. Use this parameter with caution.

• mca: parameters to add to the /etc/openmpi-mca-params.conf file. If not provided, no such file will
be created. This can be useful to include or exclude certain network interfaces. You can set this on a
per platform basis. To do this, for example, set mcai686 and mcax86 64 separately.

89

• primaryarch: Normally bootstrapping needs to be done on a machine running on the primary archi-
tecture. If primaryarch is set, the bootstrapping step can be run on any machine. This should be set
to i686, x86 64, or whatever "uname -m" returns on the primary architecture.

• altplatformX: Here X is a number from 1 to 9. This parameter gives a sub-label to each non-primary
platform. Examples might be SDK8 and SDK9 for Mark5 units using two different Conduant library
versions. For each specified alternate platform the following three additional parameters are needed
. . .

– altplatformXarch: The CPU architecture, as determined by "uname -m", that this platform is
based upon.

– altplatformXhost: A representative computer making use of this platform. This is used when
spawning a parallel build process.

– altplatformXtest: A bash conditional expression used to determine if the computer running
the setup bash script belongs to this platform. An example is: x‘pkg-config --modversion

streamstor‘ < "x9.0"

7.9 .cablecal

Cable calibration is used to measure the electrical pathlength of the oscillator signals being sent from the
control building to the antenna vertex room. The VLBA was designed to minimize pathlength variations
over time, but inevitably some temperature change and stretching due to antenna motion is to be expected.
At the VLBA, the program db2cc is used to pull cable cal from the VLBA monitor database and format it
in a manner that can be read by difx2fits. There will be one file per antenna which is given filename of
exp.stn.cablecal, where exp is the experiment code and stn is the antenna station code.

The .cablecal files are text format files. Comments within the file start with #. Valid data lines have
four space-separated columns of data:

• station code (in capital letters, usually two characters long)

• MJD timestamp

• integration period for the measurement (measured in seconds, or zero if not specified)

• the cable cal round-trip pathlenght (measured in picoseconds)

7.10 cal.vlba

Monitor data that gets attached to FITS files is extracted by tsm into a file called projectcal.vlba where
project is the name of the project, i.e., bg167 or bc120a. A single file contains the monitor data for all VLBA
antennas, maybe also including GBT, Effelsberg and Arecibo, for the duration of the project. The file is left
in /home/vlbiobs and is compressed with gzip after some time to save disk space, resulting in additional
file extension .gz. A program called vlog (sec §6.104) reads this file and produces files called flag, pcal,
tsys, and weather in the software correlator project directory. This file type can be read by AIPS task
ANTAB.

7.11 .calc

The main use of the .calc file is to drive the geometric model calculations but this file also serves as a
convenient place to store information that is contained in the .fx file but not in the .input file and is
needed for .FITS file creation. In the DiFX system, one .calc file is created by vex2difx (§6.102) for each
.input file. This file is read by calcif2) (§6.4) to produce a tabulated delay model, u, v, w values, and
estimates of atmospheric delay contributions.

90

In brief, the parameters in this file that are relevant for correlation include time, locations and geometries
of antennas, pointing of antennas (and hence delay centers) as a function of time and the Earth orientation
parameters relevant for the correlator job in question. Additional parameters that are stuffed into this
file include spectral averaging, project name, and information about sources such as calibration code and
qualifiers. In the NRAO application of DiFX, source names are faked in the actual .input file in order to
allow multiple different configurations for the same source. A parameter called realname accompanies each
source name in the .calc file to correctly populate the source file in .FITS file creation.

The syntax of this file is similar to that of the .input file. The file consists entirely of key-value pairs
separated by a colon. The value column is not constrained to start in column 21 as it is for the files used by
mpifxcorr. There are five sections in the .calc file; these sections are not separated by any explicit mark
in the file.

The first section contains values that are fixed for the entire experiment and at all antennas; all data
in this section is scalar. In the following table, all numbers are assumed to be floating point unless further
restricted. The keys and allowed values in this section are summarized below. Optional keys are identified
with a ?. Deprecated keys that will likely be removed in an upcoming version are identified with an ×.

Key Units/allowed values Comments
JOB ID integer ≥ 1 taken from .fx file

? JOB START TIME MJD + fraction start time of original .fx file
? JOB STOP TIME MJD + fraction end time of original .fx file
? DUTY CYCLE float ≤ 1 fraction of the job contained within scans

OBSCODE string observation code assigned to project
? SESSION short string session suffix to OBSCODE, e.g., A or BE
? DIFX VERSION string version of correlator, e.g. DIFX-1.5
? DIFX LABEL string name of correlator install, e.g. DIFX-WALTER

VEX FILE string dir/filename of vex file used to create the job
START MJD MJD + fraction start time of this subjob
START YEAR integer calendar year of START MJD
START MONTH integer calendar month of START MJD
START DAY integer day of calendar month of START MJD
START HOUR integer hour of START MJD
START MINUTE integer minute of START MJD
START SECOND integer second of START MJD

? SPECTRAL AVG integer ≥ 1 number of channels to average in FITS creation
? START CHANNEL integer ≥ 0 start channel number (before averaging)
? OUTPUT CHANNELS integer ≥ 1 total number of channels to write to FITS

> 0.0, < 1.0 fraction of total channels to write to FITS
? TAPER FUNCTION string currently only UNIFORM is supported

The second section contains antenna(telescope) specific information. After an initial parameter defining
the number of telescopes, there are nTelescope sections (one for each antenna), each with the following six
parameters. Lowercase t in the table below is used to indicate the telescope index, an integer ranging from
0 to nTelescope - 1. Note that in cases where units are provided under the Key column, these units are
actually part of the key.

91

Key Units/allowed values Comments
NUM TELESCOPES integer ≥ 1 number of telescopes (nTelescope).

The rows below are duplicated nTelescope times.
TELESCOPE t NAME string upper case antenna name abbreviation
TELESCOPE t MOUNT string the mount type: altz, equa, xyew, or xyns
TELESCOPE t OFFSET (m) meters axis offset in meters
TELESCOPE t X (m) meters X geocentric coordinate of antenna at date
TELESCOPE t Y (m) meters Y geocentric coordinate of antenna at date
TELESCOPE t Z (m) meters Z geocentric coordinate of antenna at date

? TELESCOPE t SHELF string shelf location of module to correlate

The third section contains a table of sources. Sources are indexed from the following section describing
the scans.

Key Units/allowed values Comments
NUM SOURCES integer ≥ 1 number of sources (nSource)

The rows below are duplicated nSource times.
SOURCE s NAME string name of source (possibly renamed from .vex

SOURCE s RA radians J2000 right ascension
SOURCE s DEC radians J2000 declination
SOURCE s CALCODE string usually upper case letters or blank
SOURCE s QUAL integet ≥ 0 source qualifier

The fourth section contains scan specific information. Except for one initial line specifying the number
of scans, nScan, this section is composed of nine parameters per scan. Each parameter is indexed by s which
ranges from 0 to nScan - 1.

Key Units/allowed values Comments
NUM SCANS integer ≥ 1 number of scans (nScan)

The rows below are duplicated nScan times.
SCAN s IDENTIFIER string name of the scan (not of the source)
SCAN s START (S) seconds start time of scan, relative to job start time
SCAN s DUR (S) seconds duration of scan
SCAN s OBS MODE NAME string reference to .input file configuration
SCAN s UVSHIFT INTERVAL (NS) time to integrate before doing uv shifts (used mainly for multi-phase-center observing)
SCAN s AC AVG INTERVAL (NS) averaging interval for export of fast-dump spectra (used for VFASTR)
SCAN s POINTING SRC integer ≥ 1 source table index identifying pointing center of scan
SCAN s NUM PHS CTRS integer ≥ 1 number of phase centers (nPC)

The rows below are duplicated nPC times.
SCAN s PHS CTR p integer ≥ 1 index to the source table

The fifth section contains Earth orientation parameters (EOP). Except for one initial line specifying the
number of days of EOPs, nEOP, this section is composed of five parameters per day of sampled EOP values.
Each parameter is indexed by e which ranges from 0 to nEOP - 1.

Key Units/allowed values Comments
NUM EOP integer ≥ 1 number of tabulated EOP values (nEOP)

The rows below are duplicated nEOP times.
EOP e TIME (MJD) MJD + fraction time of sample; fraction almost always zero
EOP e TAI UTC (sec) integer seconds leap seconds accrued at time of job start
EOP e UT1 UTC (sec) seconds UT1 - UTC
EOP e XPOLE (arcsec) arc seconds X coordinate of polar offset
EOP e YPOLE (arcsec) arc seconds Y coordinate of polar offset

92

The next (completely optional) section has a table for positions and velocites of spacecraft. Each space-
craft is indexed by s and each row thereof by r.

Key Units/allowed values Comments
? NUM SPACECRAFT integer ≥ 0 number of spacecraft (nSpacecraft)

Everything below is duplicated nSpacecraft times.
SPACECRAFT s NAME string name of spacecraft
SPACECRAFT s ROWS integer ≥ 1 number of data rows, nRows for spacecraft s

The row below is repeated nRows times.
SPACECRAFT s ROW r 7 numbers tabulated data; see below

Each data vector of data consists of seven double precision values: time (mjd), x, y, and z (meters), and
ẋ, ẏ, and ż (meters per second). These values should be separated by spaces.

The final section identifies the files to be produced.

Key Units/allowed values Comments
IM FILENAME string dir/filename of .im file to create
FLAG FILENAME string dir/filename of .flag file to create

7.12 .difx/

The SWIN format visibilities produced by mpifxcorr are written to a directory with extension .difx. Three
kinds of files can be placed in this directory as described below.

Note that the formats and naming conventions of these files is not guaranteed to stay unchanged from
version to version of DiFX, and hence it is not recommended to rely on these files for archival purposes.

7.12.1 Visibility files

The bulk of the output from mpifxcorr is usually in the form of a binary visibility file. Usually there will
be a single visibility file in this directory, but there are three ways in which multiple files may be produced:
1. a restart of the correlation, 2. if there are multiple phase centers, and 3. if there are multiple pulsar bins.

The visibility files are systematically named in the form: DIFX day sec.ssrc.bbin, where day is the 5
digit integer MJD of the start of visibilities, sec is a zero-padded 6 digit number of seconds since the MJD
midnight, src is a 4 digit zero-padded integer specifying the phase center number (starting at 0), and bin is
a 4 digit zero-padded integer specifying the pulsar bin number (starting at 0).

These files contain visibility data records. Each record contains the visibility spectrum for one polarization
of one baseband channel of one baseline for one integration time. Each starts with a binary header and is
followed by binary data.

The format of the header is shown in the table below.

Key data type units comments
baseline number int = (a1 + 1) ∗ 256 + (a2 + 1) for a1, a2 ≥ 1
day number int MJD date of visibility centroid
seconds double sec vis. centroid seconds since beginning of MJD
config index int ≥ 0 index to .input file configuration table
source index int ≥ 0 index to .calc file scan number
freq index int ≥ 0 index to .input frequency table
antenna 1 polarization char R, L, X, Y
antenna 2 polarization char R, L, X, Y
pulsar bin number int ≥ 0
visibility weight double ≥ 0.0 data weight for spectrum; typically ∼ 1
u double meter u component of baseline vector
v double meter v component of baseline vector
w double meter w component of baseline vector

93

Note that for both the header and the data, the endianness is native to the machine running mpifxcorr,
and there are currently no provisions for processing such files on a machine of different endianness.

Following the end-of-line mark for the last header row begins binary data in the form of (real, imaginary)
pairs of 32-bit floating point numbers. The .input file parameter NUM CHANNELS indicates the number
of complex values to expect. In the case of upper sideband data, the first reported channel is the “zero
frequency” channel, that is its sky frequency is equal to the value in the frequency table for this spectrum.
The Nyquist channel is not retained. For lower sideband data, the last channel is the “zero frequency”
channel. That is, in all cases, the spectrum is in order of increasing frequency and the Nyquist channel is
excised.

7.12.2 Pulse cal data files

Pulse calibration data can be extracted by mpifxcorr. Extraction is configured on a per-antenna basis.
Data for each antenna is written to a separate file; if correlation is restarted, an additional pulse cal data
file will be written.

The pulse cal data files are systematically named in the form: PCAL day sec ant, where day is the 5
digit integer MJD of the start of visibilities, sec is a zero-padded 6 digit number of seconds since the MJD
midnight, and ant is the 1 or 2 letter antenna name in capital letters. There is potential for these text files
to have very long lines (more than 10,000 bytes) when many pulse cal tones are extracted.

For DiFX versions 2.3 and earlier the data format was exactly the same as documented in §7.35. This
old version will be considered “version 0”.

The data format being used now is similar in spirit but more convenient for mpfixcorr to produce and
for difx2fits and difx2mark4 to digest leading to broader support (in theory complete) of the various
polarization, frequency, and sideband combinations allowed by DiFX. The data format is as follows:

Comment lines begin with an octothorpe (#). The first few lines of comments may contain machine-
readable information in the following format:

DiFX-derived pulse cal data

File version = 1

Start MJD =

Start seconds =

Telescope name =

Data lines always contain 6 fixed-size fields:

1. antId : Station name abbreviation, e.g., LA

2. day : Time centroid of measurement (MJD, including fractional portion)

3. dur : Duration of measurement (days)

4. datastreamId : The datastream index of for this data.

5. nRecBand : Number of recorded baseband channels

6. nTone : (Maximum) number of pulse cal tones detected per band per polarization

Following these fields is a variable-length arrays of numbers. This array contains the pulse cal data and
consists of nRecBand*nTone groups of four numbers. The groups are arranged in ascending record band
index (slow index) and ascending tone number (fast index) where the tone number increases away from the
reference frequency; not sure what happens with dual-sideband complex! The first member of this group is
the tone frequency (MHz), or -1 to indicate there was not a measurment. The second member of this group
is the polarization, one of R, L, X or Y. The third and fourth are respectively the real and imaginary parts of
the tone measured at the given sky frequency.

94

7.12.3 Switched power files

mpifxcorr can be used to extract switched power from individual antennas. Extraction is configured on a
per-datastream (usually the same as per-antenna) basis. Data for each data stream is written to a separate
file; if correlation is restarted, an additional set of switched power files will be started.

The switched power files are systematically named in the form: SWITCHEDPOWER day sec ds, where day is
the 5 digit integer MJD of the start of visibilities, sec is a zero-padded 6 digit number of seconds since the
MJD midnight, and ds is the datastream index as set in the .input file. The test lines in these files can be
long (more than 1000 bytes).

The format of these files is as follows. Each line of the file represents all measurements made on one
datastream at over one integration period. The lines contain the following columns:

1. mjdstart : The start of the integration period in mjd+fraction

2. mjdstop : The end of the integration period in mjd+fraction

These are then followed by 4 numbers for each recorded channel:

1. Pon : power in the “on” state

2. σPon : uncertainty of the power in the “on” state

3. Poff : power in the “off” state

4. σPoff
: uncertainty of the power in the “off” state

The magnitudes of the numbers are meaningless but their ratios have meaning. Text after a comment
character (#) are ignored.

7.13 .difxlog

The difxlog program (§6.23) captures DifxAlertMessage and DifxStatusMessage message types that are
sent from an ongoing software correlation process and writes the information contained within to a human
readable text file. One line of text is produced for each received message. The first five columns contain
the date and time in ddd MMM dd hh:mm:ss yyyy format (e.g., Wed Apr 22 12:48:41 2009). The sixth
column contains a word describing the contents of the remainder of the line: Options are:

STATUS : The status of the process is described

WEIGHTS : The playback weights for each antenna are listed

other : This word represents an alert severity level (one of FATAL, SEVERE, ERROR, WARNING, INFO,
VERBOSE and DEBUG) and is followed by the alert message itself.

7.14 .speed

The program difxspeed (§6.26) runs a set of performance benchmarks described by a .speed file as docu-
mented here. This file is a text file containing various parameters. There are 5 required parameters:

Parameter Comments
datastreams comma separated list of nodes on which to run datastream processes
cores comma separated list of nodes on which to run core processes
antennas list of 1 or 2 letter antenna names to process
nThread one or more values listing number of threads to use (see below)
vex vex file to use as descriptor of observation

95

The value of nThread applies to all core processes; if multiple comma-separated values are specified, these
will result in additional runs of benchmarking.

Other parameters that can be specified, either as single values or as arrays to be used in full combination
with all other value arrays, include:

Parameter Comments
nAnt number of antennas (in order of listed antennas, starting with first listed)
nCore number of core processes to start, using in order cores
tInt integration time (seconds)
specRes spectral resolution (MHz)
fftSpecRes resolution of transform
xmacLength cross-multiply stride size
strideLength fringe rotation stride size
numBufferedFFTs number of FFTs to process in one go
toneSelection pulse cal tone selection

Notes:

1. datastreams and cores lists can repeat hostnames.

2. Some combinations of parameters is illegal; at the moment it is up to the user to ensure all combinations
of values are allowed.

3. Additional parameters can be easily added to the program on demand.

7.15 .speed.out

The output of difxspeed (§6.26) is a file usually ending in .speed.out. The first many lines are comments
describing to a human reader the fixed parameters of the benchmark trials and a table describing the
meanings of the columns of the uncommented data lines that follow. In summary, the columns in the lines
that follow are:

Column(s) value(s)
1 to N values of variable parameters as described by comments above
N + 1 The average execution time of all trials run with the combination of parameters
N + 2 The RMS scatter in execution time
N + 3 to N + 2 +R List of execution times from all trials

In the above table, N is the number of parameters taking on multiple values and R is the number of
times difxspeed was run.

7.16 $DIFX MACHINES

This section describes the format of a file used through DiFX-2.2. For more recent versions please see
documentation on the DiFX wiki http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/start/ .

Environment variable DIFX MACHINES should point to a file containing a list of machines that are to be
considered elements of the software correlator. Program genmachines (§6.39) uses this file and information
within a .input file to populate the .machines file needed by mpifxcorr. Because usually only one node
in a cluster has direct access to a particular Mark5 module (or data from that module), the ordering of
computer names in the .machines file is important. Rows in the $DIFX MACHINES file contain up to three
items, the last one being optional. The first column is the name of the machine. The second column is the
number of processes to schedule on that machine (typically the number of CPU cores). The third column is
a 1 if the machine is a Mark5 unit and 0 otherwise. If this column is omitted, the machine will be assumed
to be a Mark5 unit if the first 5 characters of the computer name are mark5, and will be assumed not to be
otherwise. Comments in this file begin with an octothorpe (#). Lines with fewer than two columns (after
excision of comments) are ignored.

96

http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/start/

7.17 .dir

Reading directory information off Mark5 modules can take a bit of time (measured in minutes usually).
Since the same modules are often accessed multiple times, the directories are cached in $MARK5 DIR PATH/ .
In this directory, there will be one file per module that has been used, named VSN.dir, where VSN is the
volume serial number of the module, e.g., NRAO−023. The format of these files is as follows: The first line
contains three fields: VSN, the number of scans on the module, nScan, and either A or B indicating the last
bank the module was installed in. At the end of this line the characters RT can be added (by hand) which
will cause the modules to be accessed using Real-Time mode which is tolerant of missing or bad disks within
the module. Then there are nScan rows containing information about each scan, each with 11 columns.
Values are floating point unless otherwise noted.

Key Units/allowed values Comments
Start byte 64-bit integer bytes offset of the scan on the Mark5 module
Length 64-bit integer bytes length of the scan
Start day integer MJD the modified Julian day of the scan start
Start time integer seconds the scan start time
Frame num integer frame number since last second tick
Frames per sec integer number of frames per second
Scan Duration seconds the duration of the scan
Frame size integer bytes the length of one data frame, including headers
Frame offset integer bytes the offset to the start of the first entire frame
Tracks integer the number of data tracks
Format integer 0 for VLBA format, 1 for Mark4 format, 2 for Mark5B
Name string scan name, usually including the project code and station
Extra info string(s) see below

After the name of the scan additional free-form text can appear. These extra parameters can be machine
parsable. The only use of this as of this writing is to indicate the thread ids for VDIF data. This will
always be formatted as Threads= followed by a comma separated list of thread ids without any spaces. For
example: Threads=0,640,256,896 .

7.18 .filelist

When using the filelist parameter in an ANTENNA section of a .v2d (§7.42), the list of data files to correlate
are stored in a text file. This is a text file containing data lines and optionally comments. Any text after
the comment character (#) is ignored. A data line consists of a filename (must have complete path as can
be used to find the file on the datastream node for this antenna) and optionally a start time and stop time.
Start and stop times can be expressed in any of the formats supported by vex2difx.

7.19 .FITS

The .FITS files discussed here are produced by difx2fits. They aim to conform to the same table structures
as the FITS-IDI files produced by the VLBA correlator. The format is described in AIPS Memo 102, “The
FITS Interferometry Data Interchange Format”, however, this memo is a bit out of date and the data
structures described are not in exact agreement with those made by the VLBA correlator; in all cases the
format of data produced by the VLBA hardware correlator is favored where the two disagree. The tables in
these FITS files have a nearly 1 to 1 relationship with the tables that are seen within AIPS, though their
two letter abbreviations differ. The following tables are produced by difx2fits:

97

Table Description
AG The array geometry table
SU The source table
AN The antenna table
FR The frequency table
ML The model table
CT The correlator (eop) table
MC The model components table
SO The spacecraft orbit table
UV The visibility data table
FG The flag table
TS The system temperature table
PH The phase calibration table (pulse cals and state counts)
WR The weather table
GN The gain curve table
GM The pulsar gate model table

Not all of these tables will always be written.

7.20 .fitslist

A .fitslist file is written by makefits and contains the entire list of .FITS files for the correlator pass.
Due to the different constraints of the correlation process and the FITS-IDI format, the number of resultant
FITS files may be greater or less than the number of jobs. This file type is used by difxarch to ensure that
all of the correlated output ends up in the archive. The file is composed of two parts: a header line and one
line for each .FITS file. The header line consists of a series of key=value pairs. Each key and value must
have no whitespace and no whitespace should separate these words from their connecting = sign. While any
number of key-value pairs may be specified, the following ones (which are case sensitive) are expected to be
present:

1. exper : the name of the experiment, including the segment code

2. pass : the name of the correlator pass

3. jobs : the name of the .joblist file used by makefits

4. mjd : the modified Julian day when makefits created this file

5. DiFX : the version name for the DiFX deployment (the value of $DIFX VERSION when vex2difx was
run)

6. difx2fits : the version of difx2fits that was run

Each additional line contains information for one .FITS file of the correlation pass. These lines contain three
fields:

1. archiveName : the name of the file that will get injected into the archive (see §??)

2. fileSize : the size of the file in MB

3. origName : the name of the file as produced by difx2fits (via makefits)

98

7.21 .flag

The program vex2difx may write a .flag file for each .input file it creates. This file is referenced from the
.calc file. This flag file is used by difx2fits to exclude nonsense baselines that might have been correlated.
Data from nonsense baselines can occur in DiFX output when multiple subarrays are coming and going. The
flag file instructs difx2fits to drop these data during conversion to FITS-IDI. The format of this text file
is as follows. The first line contains an integer, n, which is the number of flag lines that follow. The next
n lines each have three numbers: MJD1, MJD2 and ant. The first two floating point numbers determine
the time range of the flag in Modified Julian Days. The last integer number is the antenna number to flag,
a zero-based index corresponding to the TELESCOPE table of the corresponding .input file.

7.22 .<antId>.flag

A series of files called .<antId>.flag are created when program vlog operates on the cal.vlba file. These
files contain lists of antenna-based flags generated by the on-line system that should be propagated into the
FITS FL table. These flag files contains two kinds of lines. Comment lines begin with an octothorpe (#)
and contain no vital information. Flag lines always consist of exactly 5 fields:

1. antId : Station name abbreviation, e.g., LA; also part of the file name.

2. start : Beginning of flagged period (day of year, including fractional portion; or Modified Julian Days)

3. end : End of flagged period (day of year, including fractional portion; or Modified Julian Days)

4. recChan : Record channel affected; -1 for all record channels, otherwise a zero-based index

5. reason : Reason for flag, enclosed in single quotes, truncated to 24 characters

The flag rows are sorted by start time. The flags are propagated into the FL table. Visibility data are not
altered. Special VLBA reason codes recognized by difx2fits are as follows: ′recorder′, the flag entry will
be ignored and is not propagated into FITS, and ′observingsystemidle′, the value of MJD2 is ignored and
replaced by the ending MJD of the observation.

7.23 .channelflags

User scripts or the program vex2difx may write a .channelflags file for each .input file. Difx2fits will
propagate the user flags of bad spectral channels into the FITS flag table. This file contains two kinds of
lines. Comment lines begin with an octothorpe (#) and contain no vital information. Flag lines always
consist of 7 fields:

1. antId : Station name abbreviation, e.g., LA

2. start : Beginning of flagged period (Day of Year or Modified Julian Day; including fractional portion)

3. end : End of flagged period (Day of Year or Modified Julian Day; including fractional portion)

4. freqIndex : The DiFX frequency to flag, a zero-based index corresponding to a frequency in the FREQ

TABLE of the corresponding .input file.

5. startCh : The first spectral channel to flag, a zero-based index.

6. endCh : The last spectral channel to flag, a zero-based index.

7. reason : Reason for flag, enclosed in single quotes, truncated to 24 characters.

Difx2fits translates the DiFX frequency freqIndex to the corresponding FITS IF, and flags the specified
channels in all polarizations of that IF. These flags are propagated into the FL table. Visibility data are not
altered.

99

7.24 flag

A file called flag is created when program vlog operates on the cal.vlba file. The file contains a list of
antenna-based flags generated by the on-line system that should be propagated into the FITS FL table. The
file is an experiment-wide flag file and effectively a concatenation of .<antId>.flag files. This file contains
two kinds of lines. Comment lines begin with an octothorpe (#) and contain no vital information. Flag lines
always consist of exactly 5 fields:

1. antId : Station name abbreviation, e.g., LA

2. start : Beginning of flagged period (Day of Year or Modified Julian Day; including fractional portion)

3. end : End of flagged period (Day of Year or Modified Julian Day; including fractional portion)

4. recChan : Record channel affected; -1 for all record channels, otherwise a zero-based index

5. reason : Reason for flag, enclosed in single quotes, truncated to 24 characters

The flag rows are sorted first by antenna, and then start time. Special VLBA reason codes recognized by
difx2fits are as follows: ’recorder’, the flag entry will be ignored and is not propagated into FITS, and
’observing system idle’, the value of MJD2 is ignored and replaced by the ending MJD of the observation.

7.25 .im

The .im file contains polynomial models used by difx2fits in the creation of FITS files. After a header
that is similar to that of a .rate file, the contents are organized hierarchically with scan number, sub-scan
interval, and antenna number being successively faster-incrementing values. The keys and allowed values
in this section are summarized below: Note that the values of the delay polynomials in this file have the
opposite sign as compared to those generated by CALC and those stored in .FITS files. Keys preceded by
? are optional. Note that all polynomials are expanded about their MJD, SEC start time and use seconds as
the unit of time.

100

Key Units/allowed values Comments
? CALC SERVER string name of the calc server computer used
? CALC PROGRAM integer RPC program ID of the calc server used
? CALC VERSION integer RPC version ID of the calc server used

START YEAR integer calendar year of START MJD
START MONTH integer calendar month of START MJD
START DAY integer day of calendar month of START MJD
START HOUR integer hour of START MJD
START MINUTE integer minute of START MJD
START SECOND integer second of START MJD
POLYNOMIAL ORDER 2, 3, 4 or 5 polynomial order of interferometer model order
INTERVAL (SECS) integer interval between new polynomial models

ABERRATION CORR

 UNCORRECTED

APPROXIMATE

EXACT

level of u, v, w aberration correction

NUM TELESCOPES integer ≥ 1 number of telescopes (nTelescope)
The row below is duplicated nTelescope times.

TELESCOPE t NAME string upper case antenna name abbreviation
NUM SCANS integer ≥ 1 number of scans (nScan).

Everything below is duplicated nScan times.
SCAN s POINTING SRC string name of source used as pointing center
SCAN s NUM PHS CTRS ≥ 1 number of phase centers this scan (nPCs)

Everything below is duplicated nPCs times.
SCAN s PHS CTR p SRC string name of source defining this phase center
SCAN s NUM POLY ≥ 1 number of polynomials covering scan (nPolys,p)

Everything below is duplicated nPolys,p times.
SCAN s POLY p MJD integer ≥ 0 the start MJD of this polynomial
SCAN s POLY p SEC integer ≥ 0 the start sec of this polynomial

Everything below is duplicated nTelescope times.
ANT a DELAY (us) order+1 numbers terms of delay polynomial
ANT a DRY (us) order+1 numbers terms of dry atmosphere
ANT a WET (us) order+1 numbers terms of wet atmosphere

? ANT a AZ order+1 numbers azimuth polynomial (deg)
? ANT a EL GEOM order+1 numbers geometric (encoder) elevation (deg)
? ANT a EL CORR order+1 numbers refraction corrected elevation (deg)
? ANT a PAR ANGLE order+1 numbers parallactic angle (deg)

ANT a U (m) order+1 numbers terms of baseline u
ANT a V (m) order+1 numbers terms of baseline v
ANT a W (m) order+1 numbers terms of baseline w

7.26 .input

This section describes the .input file format used by mpifxcorr to drive correlation. Because NRAO-DiFX
1.0 uses a non-standard branch of mpifxcorr some of the data fields will differ from those used in the official
version, either in parameter name or in the available range of values. Currently the parameters must be
in the order listed here. To get the most out of this section it is advisable to look at an actual file while
reading. An example file is stashed at http://www.aoc.nrao.edu/~wbrisken/NRAO-DiFX-1.1/ . In the
tables below, numbers are assumed to floating point unless otherwise stated.

Note that the input file format has undergone a few minor changes since NRAO-DiFX version 1.0.

101

http://www.aoc.nrao.edu/~wbrisken/NRAO-DiFX-1.1/

7.26.1 Common settings table

Below are the keywords and allowed values for entries in the common settings table. This table begins with
header

COMMON SETTINGS ##!

This is always the first table in a .input file.

Key Units/allowed values Comments
CALC FILENAME string name and full path to .calc file
CORE CONF FILENAME string name and full path to .threads file
EXECUTE TIME (SEC) integer seconds observe time covered by this .input file
START MJD integer MJD start date
START SECONDS integer seconds start time
ACTIVE DATASTREAMS integer ≥ 2 number of antennas (nAntenna)
ACTIVE BASELINES integer ≥ 1 number of baselines to correlate (nBaseline)
VIS BUFFER LENGTH integer ≥ 1 the number of concurrent integrations to allow
OUTPUT FORMAT boolean always SWIN here
OUTPUT FILENAME string name of output .difx directory

Typically, nBaseline = nAntenna · (nAntenna − 1)/2. Autocorrelations are not included in this count.

7.26.2 Configurations table

Below are the keywords and allowed values for entries in the configurations table. This table begins with
header

CONFIGURATIONS ###!

Two indexes are used for repeated keys. The index over datastream (antenna) is d, running from 0 to
nAntenna - 1 and the index over baseline is b, running from 0 to nBaseline - 1.

Key Units/allowed values Comments
NUM CONFIGURATIONS integer ≥ 1 number of modes in file (nConfig)
CONFIG NAME string name of configuration
INT TIME (SEC) seconds integration time
SUBINT NANOSECONDS nanosec amount of time to process as one subintegration
GUARD NANOSECONDS nanosec ≥ 0 amount of extra data to send for overlap
FRINGE ROTN ORDER int 0 is post-FFT, 1 is delay/rate, . . .
ARRAY STRIDE LENGTH int used for optimized fringe rotation calculations
XMAC STRIDE LENGTH int number of channels to cross multiply in one batch (must evenly divide into number of channels)
NUM BUFFERED FFTS int number of FFTs to cross-multiply in one batch
WRITE AUTOCORRS boolean enable auto-correlations; TRUE here
PULSAR BINNING boolean enable pulsar mode
PULSAR CONFIG FILE string (only if BINNING is True) see § 7.7
PHASED ARRAY boolean set to FALSE (placeholder for now)
DATASTREAM d INDEX integer ≥ 0 DATASTREAM table index, starting at 0
BASELINE b INDEX integer ≥ 0 BASELINE table index, starting at 0

7.26.3 Rule table

The rule tables describes which configuration will be applied at any given time. Usually this filters on scan
attributes such as source, but can also be done in a time-based manner (start and stop times). An time for

102

which no configuration matches will not be correlated. If more than one rule matches a given time, they
must all refer to the same configuration.

This table begins with header

RULES ############!

The table below uses r to represent the rule index, which ranges from 0 to nRule - 1.

Key Units/allowed values Comments
RULE r CONFIG NAME string name to associate with this rule

? SOURCE string source to match
? SCAN ID string scan name to match
? CALCODE string cal code to match
? QUAL string source qualifier to match
? MJD START string earliest time to match
? MJD STOP string latest time to match

7.26.4 Frequency table

Below are the keywords and allowed values for entries in the frequency table which defines all possible sub-
bands used by the configurations in this file. Each sub-band of each configuration is mapped to one of these
through a value in the datastream table (§7.26.6). Each entry in this table has three parameters which are
replicated for each frequency table entry. This table begins with header

FREQ TABLE #######!

The table below uses f to represent the frequency index, which ranges from 0 to nFreq - 1 and t to represent
pulse cal tone index, which ranges from 0 to nTonef .

Key Units/allowed values Comments
FREQ ENTRIES integer ≥ 1 number of frequency setups (nFreq)
FREQ (MHZ) f MHz sky frequency at band edge
BW (MHZ) f MHz bandwidth of sub-band
SIDEBAND f U or L net sideband of sub-band
NUM CHANNELS f integer ≥ 1 initial number of channels (FFT size, nFFT, is twice this)
CHANS TO AVG f integer ≥ 1 average this many channels before generating output spectra)
OVERSAMPLE FAC. f integer ≥ 1 total oversampling factor of baseband data
DECIMATION FAC. f integer ≥ 1 portion of oversampling to handle by decimation
PHASE CALS f OUT integer ≥ 0 number of phase cals to produce (nTonef)

The row below is duplicated nTonef times.
PHASE CAL f/t INDEX integer tone number of band

7.26.5 Telescope table

Below are the keywords and allowed values for entries in the telescope table which tabulates antenna names
and their associated peculiar clock offsets, and the time derivatives of these offsets. Much of the other
antenna-specific information is stored in the datastream table (§7.26.6). Each datastream of each configura-
tion is mapped to one of these through a value in the datastream table. Each entry in this table has three
parameters which are replicated for each telescope table entry. This table begins with header

TELESCOPE TABLE ##!

The table below uses a to represent the antenna index, which ranges from 0 to nAntenna - 1 and c to
represent clock coefficient, ranging from 0 to nCoeffa.

103

Key Units/allowed values Comments
TELESCOPE ENTRIES integer ≥ 1 number of antennas (nAntenna)
TELESCOPE NAME a string abbreviation of antenna name
CLOCK REF MJD a double date around which the following polynomial is expanded
CLOCK POLY ORDER a int ≥ 0 polynomial order of telescope clock model (nCoeffa

CLOCK COEFF a/c µsec/secc clock model polynomial coefficient

7.26.6 Datastream table

The datastream table begins with header

DATASTREAM TABLE #!

The table below uses f to represent recorded frequencies, which ranges from 0 to nFreq - 1. A second index,
z, is used to iterate over zoom bands, ranging from 0 to nFreq - 1. A third index, i, is used to cover the range
0 to nBB - 1, where the total number of basebands is given by nBB ≡

∑
f nPolf . In the DiFX system, all

sub-bands must have the same polarization structure, so nBB = nFreq · nPol . This index is reused for the
zoom bands in an analogous manner.

Key Units/allowed values Comments
DATASTREAM ENTRIES integer ≥ 1 number of antennas (nDatastream)
DATA BUFFER FACTOR integer ≥ 1
NUM DATA SEGMENTS integer ≥ 1
TELESCOPE INDEX integer ≥ 0 telescope table index of datastream
TSYS Kelvin if zero (normal in NRAO usage), don’t scale data by tsys
DATA FORMAT string data format
QUANTISATION BITS integer ≥ 1 bits per sample
DATA FRAME SIZE integer ≥ 1 bytes in one frame(or file) of data
DATA SAMPLING string REAL or COMPLEX
DATA SOURCE string FILE (see §??), MODULE for Mark5 playback, or FAKE for benchmarking mode
FILTERBANK USED boolean currently only FALSE

PHASE CAL INT (MHZ) int pulse cal comb frequency spacing, or 0 if no pulse cal tones
NUM RECORDED FREQS integer ≥ 0 number of different frequencies recorded for this datastream
REC FREQ INDEX f integer ≥ 0 index to frequency table
CLK OFFSET f (us) µsec frequency-dependent clock offset
FREQ OFFSET f (us) µsec frequency-dependent LO offset
NUM REC POLS f 1 or 2 for this recorded frequency, the number of polarizations
REC BAND i POL R or L polarization identity
REC BAND i INDEX integer ≥ 1 index to frequency setting array above; nBB per entry
NUM ZOOM FREQS integer ≥ 0 number of different zoom bands set for this datastream
ZOOM FREQ INDEX z integer ≥ 0 index to frequency table
NUM ZOOM POLS z 1 or 2 for this recorded frequency, the number of polarizations
ZOOM BAND i POL R or L polarization identity
ZOOM BAND i INDEX integer ≥ 1 index to frequency setting array above; nBB per entry

7.26.7 Baseline table

In order to retain the highest level of configurability, each baseline can be independently configured at some
level. This datastream table begins with header

BASELINE TABLE ###!

104

The baseline table has multiple entries, each one corresponding to a pair of antennas, labeled A and B in
the table. For each of nBaseline baseline entries, nFreq sub-bands are processed, and for each a total of
nProd polarization products are formed. Indexes for each of these dimensions are b, f and p respectively,
each starting count at 0. Within the DiFX context, all baselines must have the same nFreq and nProd,
though this is not a requirement of mpifxcorr in general. Each of the nFreq sub-bands specifies a pair of
(possibly identical) datastream table bands to correlate. The global frequency table index of that product is
by default identical to some index that one band out of the datastream table band pair ultimately refers to.
Under DiFX 2.7 that target frequency can be specified explicitly and is interpreted as a spectral placement
directive – which target frequency the sub-band shall contribute data to. One or more sub-bands can refer
to the same target frequency index.

Key Units/allowed values Comments
BASELINE ENTRIES integer ≥ 1 number of entries in table, nBaseline
D/STREAM A INDEX b integer ≥ 0 datastream table index of first antenna
D/STREAM B INDEX b integer ≥ 0 datastream table index of second antenna
NUM FREQS b integer ≥ 1 number of frequencies on this baseline, nFreqb
(TARGET FREQ b integer ≥ 0 index to frequency table)
POL PRODUCTS b/f integer ≥ 1 number of polarization products, nProdb

D/STREAM A BAND p integer ≥ 0 index to frequency array in datastream table
D/STREAM B BAND p integer ≥ 0 same as abovem, but for antenna B, not A

7.26.8 Data Table

In the following table, d is the datastream index, ranging from 0 to nDatastream - 1 and f is the file index
ranging from 0 to nFiled .

Key Units/allowed values Comments
D/STREAM d FILES integer ≥ 1 number of files nFiled associated with datastream d
FILE d/f string name of file or module associated with datastream d

For datastreams reading off Mark5 modules, nFile will always be 1 and the filename is the VSN of the
module being read.

7.27 .joblist

A single .joblist file is written by vex2difx (§6.102) as it produces the DiFX .input (and other) files for
a given correlator pass. This file contains the list of jobs to run and some versioning information that allows
improved accountability of the software versions being used. This file us used by difxqueue and makefits

to ensure that a complete set of jobs is accounted for. The file is composed of two parts: a header line
and one line for each job. The header line consists of a series of key=value pairs. Each key and value must
have no whitespace and no whitespace should separate these words from their connecting = sign. While any
number of key-value pairs may be specified, the following ones (which are case sensitive) are expected to be
present:

1. exper : the name of the experiment, including the segment code

2. v2d : the vex2difx input file used to produce the jobs of this pass

3. pass : the name of the correlator pass

4. mjd : the modified Julian day when vex2difx created this file

5. DiFX : the version name for the DiFX deployment (the value of $DIFX VERSION when vex2difx was
run)

105

6. vex2difx : the version of vex2difx that was run

Each additional line contains information for one job in the pass. The columns are:

1. jobName : the name/prefix of the job

2. mjdStart : the observe start time of the job

3. mjdStop : the observe stop time of the job

4. nAnt : the number of antennas in the job

5. maxPulsarBin : the maximum number of pulsar bins to come from any scan in this job (usually zero)

6. nPhaseCenters : the maximum number of phase centers to come from any scan in this job (usually
one)

7. tOps : estimated number of trillion floating point operations required to run the job

8. outSize : estimated FITS file output size (MB)

Usually the comment character # followed by a list of station codes is appended to the end of each line.

7.28 .jobmatrix

As of version 2.6 of difx2fits a file with extension .jobmatrix will be written for each .FITS file created.
This file is meant as a summary for human use and as such does not have a format that should be considered
fixed. The file contains a 2-dimensional map (antenna number vs. time) of which jobs contributed to the
.FITS file.

7.29 .lag

Program zerocorr (§6.108 produces lag output in a format documented here. There is one line of output
per lag. Each line has 7 columns as per the following table:

Line Contents
1 Channel (spectral point) number (counts from zero)
2 Time lag (sec)
3 Real value of the lag function
4 Imaginary value of the lag function
5 Amplitude
6 Phase
7 Window function (weight at this lag)

7.30 .log

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be accom-
panied by a corresponding .log file. This file contains a summary of the contents of that .FITS file. It is
analogous to the logfile.lis file produced by the old FITSsniffer program. This file is free-form ASCII
that is intended for viewing by human eyes, and is should not be used as input to any software as the format
is not guaranteed to remain constant.

106

7.31 .machines

The .machines file is used by mpirun to determine which machines will run mpifxcorr. This is a text
file containing a list of computers, one to a line possibly with additional options listed, on which to spawn
the software correlator process. As a general rule the MPI rank, a unique number for each process that
starts at 0, are allocated in the order that the computer names are listed. This general rule can break down
in cases where the same computer name is listed more than once; the behavior in this case depends on
the MPI implementation being used. MPI rank 0 will always be the manager process. Ranks 1 through
nDatastream will each be a datastream process. Additional processes will be computing (core) processes. If
more processes are specified for mpirun with the -np option than there are lines in this file, the file will be
read again from the top, so the processes will be assigned in a cyclic fashion (again, this depends somewhat
on the MPI implementation and the other parameters passed to mpirun; for DiFX with OpenMPI, this
assumes --bynode is used). If the program startdifx is used to start the correlation process, the number
of processes to start is determined by the number of lines in this file. If wrapping to the top of this file is
desired, dummy comment lines (beginning with #) can be put at the end of the .machines file to artificially
raise the number of processes to spawn. Within DiFX, this file is typically produced by genmachines. Keep
in mind that this file is directly read by the MPI execution program mpirun and the format of the file
may differ depending on the MPI implementation that you are using. With OpenMPI appending slots=1

max-slots=1 to the end of each line ensures that a single instance of mpifxcorr is run on that machine.
If both a datastream process and a core process are to be run on the same computer, then using options
slots=1 max-slots=2 might be appropriate.

7.32 .mark4list

A .mark4list file is written by makemark4 and contains the entire list of gzip compressed file sets (ending
in .mark4.tar.gz) for the correlator pass. Due to the different constraints of the correlation process and
the Mark4 format, the number of resultant compressed file sets may be greater or less than the number of
jobs. This file type is used by difxarch to ensure that all of the correlated output ends up in the archive.
The file is composed of two parts: a header line and one line for each compressed file set. The header line
consists of a series of key=value pairs. Each key and value must have no whitespace and no whitespace should
separate these words from their connecting = sign. While any number of key-value pairs may be specified,
the following ones (which are case sensitive) are expected to be present:

1. exper : the name of the experiment, including the segment code

2. pass : the name of the correlator pass

3. jobs : the name of the .joblist file used by makemark4

4. mjd : the modified Julian day when makemark4 created this file

5. DiFX : the version name for the DiFX deployment (the value of $DIFX VERSION when vex2difx was
run)

6. difx2mark4 : the version of difx2mark4 that was run

Each additional line contains information for one compressed file set of the correlation pass. These lines
contain three fields:

1. archiveName : the name of the file that will get injected into the archive (see §??)

2. fileSize : the size of the file in MB

3. origName : the name of the file as produced by difx2mark4 (via makemark4)

107

7.33 .oms

A .oms file is written by sched and contains machine (and human) readable information that is useful in
setting up correlator jobs. In the case of the VLBA DiFX correlator, program oms2v2d (§6.72) uses this file
to prepare a template .v2d file (§7.42) that contains some information not available in the vex file, such as
intended integration time and number of channels.

7.34 .params

A file with extension .params is written by vex2difx (§6.102) when it is provided with the -o option. This
file is a duplicate of the .v2d file that was supplied but with all unspecified parameters listed with the
defaults that they assumed. The format is exactly the same as the .v2d files; see §7.42 for documentation
of the format. The .params file can be used as a legal .v2d file if necessary.

7.35 pcal

A file called pcal is created when program vlog operates on the cal.vlba file. This file contains three
measurements: the cable length calibration, pulse calibration, and state counts. This file contains two kinds
of lines. Comment lines begin with an octothorpe (#) and contain no vital information. Data lines always
begin with 9 fields describing the content of that data line:

1. antId : Station name abbreviation, e.g., LA

2. day : Time centroid of measurement (MJD or day of year, including fractional portion)

3. dur : Duration of measurement (days)

4. cableCal : Cable calibration measurement (picoseconds)

5. nPol : Number of polarizations with measurements

6. nBand : Number of sub-bands with measurements

7. nTone : Number of pulse cal tones detected per band per polarization, possibly zero

8. nState : Number of state count states measured per band per polarization, possibly zero

9. nRecChan : Number of record channels at time of measurement (≤ nPol * nBand)

Following these nine fields are two variable-length arrays of numbers. The first variable-length field is the
pulse cal data field consisting of nPol*nBand*nTone groups of four numbers. The first member of this group
is the recorder channel number (zero-based) corresponding to the measurement. The second member of this
group is the tone sky frequency (MHz). The third and fourth are respectively the real and imaginary parts of
the tone measured at the given sky frequency. The order in which the groups are presented (in ‘C’ language
array syntax, as used throughout this document) is [nPol][nBand][nTone]. Note that if there are fewer than
nPol*nBand record channels, the record channel will be −1 for some groups. The second variable-length field
is the state count data. For each band of each polarization, nState + 1 values are listed. The first number is
the record channel number or -1 if that polarization/band combination was not observed or monitored. The
remainder contain state counts. nState can be either 0 or 2nBit, where nBit is the number of quantization
bits. The order in which these groups are listed is [nPol][nBand].

7.36 .polyco

A polyco file contains a single polynomial for pulse phase that is valid for a fraction (up to 100%) of a job file.
An additional numeric suffix is appended to the filename specifying the polynomial index for a particular
.pulsar file that shares the same base name. The format of the file is the same as a Tempo pulsar file [8].

108

7.37 .shelf

The vex file format (see §7.44 and references within) does not have a formal slot to record the shelf location
of media, so db2vex stashes the shelf location in a separate file. This information is critical for the correlator
operators to know where to find modules for a project and for analysts preparing correlator jobs to know if
media have arrived. The .shelf file is used by vex2difx when writing .calc files. It can also be used
as input to getshelf. The file format is very simple. One row is used for each module that was used in
the observation. Typically rows are sorted in the same order as antennas in the .input file. The comment
character is # – any text following this character on a line is ignored. Each line contains 3 white-space
separated columns:

1. antId : The typically 2 letter station abbreviation

2. vsn : The volume serial number of the media (e.g., NRAO-123)

3. shelf : The shelf location, which can be any string without whitespace (e.g., BD89), or none if the media
is not at the correlator

7.38 .threads

The .threads file tells mpifxcorr how many threads to start on each processing node. Within DiFX, this
file is typically produced by genmachines. The .threads file has a very simple format. The first line
starts with NUMBER OF CORES:. Starting at column 21 is an integer that should be equal to the number of
processing nodes (nCore) specified in the corresponding .machines file. Each line thereafter should contain
a single integer starting at column 1. There should be nCore such lines.

7.39 tsys

A file called tsys is created when program vlog operates on the cal.vlba file. This text file contains
measurements of the system temperature and name of receiver for each baseband channel. This file contains
two kinds of lines. Comment lines begin with an octothorpe (#) and contain no vital information. Data
lines always contain 4 fixed-size fields:

1. antId : Station name abbreviation, e.g., LA

2. day : Time centroid of measurement (day of year or mjd, including fractional portion)

3. dur : Duration of measurement (days) or zero if not known

4. nRecChan : Number of baseband channels recorded

Following these 4 fields are nRecChan pairs of values, one for each baseband channel. The first element of
each pair is the system temperature (in K) and the second is the receiver name (e.g., 4cm, or 7mm).

This format should not be confused with switched power files produced by mpifxcorr (see §7.12.3).

7.40 weather

A file called weather is created when program vlog operates on the cal.vlba file. This file contains
tabulated values of various meteorological measurements. This file contains two finds of lines. Comment
lines begin with an octothorpe (#) and contain no vital information. Data lines always contain 9 fixed-size
fields:

1. antId : Station name abbreviation, e.g., LA

2. day : Time of measurement (MJD or day of year, including fractional portion)

3. T : Ambient temperature (Centigrade)

109

4. P : Pressure (mbar)

5. dewPoint : Dew point (Centigrade)

6. windSpeed : Wind speed (m/s)

7. windDir : Wind direction (degrees E of N)

8. precip : Accumulated rain since UT midnight (cm)

9. windGust : Maximum wind gust over collection period (m/s)

7.41 .wts

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be accom-
panied by a corresponding .wts file. This file contains statistics of the data weights, typically dominated
by the completeness of records as determined by the data transport system, over a typically 30 second long
period.

The first line is simply the observe code, e.g., MT831 .
Each additional line in the file is a complete record for a given antenna for a given interval, containing

information for each baseband channel separately. The format of these lines is as follows:

Key Units/allowed values Comments
MJD integer ≥ 1 MJD day number corresponding to line
hour ≥ 0.0, < 24.0 hour within day
antenna number ≥ 1 antenna table index
antenna name string
nBBC ≥ 1 Number of baseband channels
mean weight ≥ 0.0 This column repeated nBBC times
min weight ≥ 0.0 This column repeated nBBC times
max weight ≥ 0.0 This column repeated nBBC times

This file can be used directly with plotting program plotwt or used more automatically with difxsniff.

7.42 .v2d

The .v2d file is used to specify correlation options to vex2difx and adjust the way in which it forms DiFX
input files based on the .vex file. The .v2d file consists of a number of global parameters that affect the
way that jobs are created and several sections that can customize correlation on a per-source, per mode, or
per scan basis. All parameters (those that are global and those that reside inside sections) are specified by
a parameter name, the equal sign, and one value, or a comma-separated list of values, that cannot contain
whitespace. Whitespace is not required except to keep parameter names, values, and section names separate.
All parameter names and values are case sensitive except for source names and antenna names. The # is a
comment character; any text after this on a line is ignored.

Most parameters are one of the following types:

• bool : A boolean value that can be True or False. Any value starting with 0, f, F, or - will be
considered False and otherwise True.

• float : A floating point number. Can be of the forms: 1.23, 1.2e-4, -12.6, 4

• int : An integer.

• string : Any sequence of printable(non-whitespace) characters. Certain fields require strings of a
maximum length or certain form.

110

• date : A date field; see below.

• array : Array can be of any of the four above types and are indicated by enclosing brackets, e.g., [int].
The empty list is indicated with [] which is usually implied to be all-inclusive.

All times used in vex2difx are in Universal Time and are internally represented as a double precision
value. The integer part of this value is the date corresponding to 0h UT. The fractional part, when multiplied
by 86400, gives the number of seconds since 0h UT. Note that this format does not allow one to specify the
actual leap second if one occurs on that day. Several date formats are supported:

• Modified Julian Day : A decimal MJD possibly including fractional day. E.g.: 54345.341944

• Vex time format : A string of the form: 2009y245d08h12m24s

• VLBA-like format : A string of the form: 2009SEP02-08:12:24

• ISO 8601 format : A string of the form: 2009-09-02T08:12:24

Global parameters can be specified one or many per line such as:
maxGap = 2000 # seconds

or
mjdStart = 52342.522 mjdStop=52342.532

The following parameter names are recognized:

111

Name Type Units Defaults Comments
vex string filename of the vex file to process; this is required
mjdStart date obs. start discard any scans or partial scans before this time
mjdStop date obs. stop discard any scans or partial scans after this time
break date list of MJD date/times where jobs are forced to be broken
minSubarray int 2 don’t make jobs for subarrays with fewer antennas than this
maxGap float sec 180 split an observation into multiple jobs if there are

correlation gaps longer than this number
tweakIntTime bool False adjust (up to 40%) int. time to ensure int. blocks per send
singleScan bool False if True, split each scan into its own job
singleSetup bool True if True, allow only one setup per job; True is required

for FITS-IDI conversion
maxLength float sec 7200 don’t allow individual jobs longer than this amount of time
minLength float sec 2 don’t allow individual jobs shorter than this amount of time
maxSize float MB 2000 max FITS-IDI file size to allow
dataBufferFactor int 32 the mpifxcorr DATABUFFERFACTOR parameter
nDataSegments int 8 the mpifxcorr NUMDATASEGMENTS parameter
jobSeries string the base filename of .input and .calc files to be

created; defaults to the base name of the .v2d file
startSeries int 20 the default starting number for jobs created
sendLength float sec 0.262144 roughly the amount of data to send at a time from

datastream processes to core processes
antennas [string] [] = all a comma separated list of antennas to include in correlation
baselines [string] [] = all a comma separated list of baselines to correlate; see below
padScans bool True insert non-correlation scans in recording gaps to prevent

mpifxcorr from complaining
invalidMask int 0xFFFF this bit-field selects which flag conditions are considered

when writing flag file: 1=Recording, 2=On source, 4=Job
time range, 8=Antenna in job

visBufferLength int 32 number of visibility buffers to allocate in mpifxcorr
overSamp int force all basebands to use the given oversample factor
mode string normal mode of operation; see below
threadsFile string overrides the name of the threads file to use
nCore int with nThread and machines, cause a .threads file to be made
nThreads int number of threads per core in .threads file

machines [string] comma separated list of machines to use as processors
first is head node, then datastreams, then cores

maxReadSize int bytes 25000000 maximum number of bytes to read at a time
minReadSize int bytes 10000000 minimum number of bytes to read at a time

The baselines parameter supports the wildcard character * an individual antenna name, or lists of antenna
names separated by + on each side of a hyphen (-). Multiple baseline designators can be listed. Examples:

• A1-A2 : Only correlate one baseline

• A1-A2, A3-A4 : Correlate 2 baselines

• *-* : Correlate all baselines

• A1-* or *-A1 : Correlate all baselines to antenna A1

• A1+A2-* : Correlate all baselines to antenna A1 or A2

• A1+A2-A3+A4+A5 : Correlate 6 baselines

112

A source section can be used to change the properties of an individual source, such as its position or
name. In the future this is where multiple correlation centers for a given source will be specified. A source
section is enclosed in a pair of curly braces after the keyword SOURCE followed by the name of a source,
for example

SOURCE 3C273

{

source parameters go here
}

or equivalently

SOURCE 3c273 { source parameters go here }

Name Type Units Defaults Comments
ra J2000 right ascension, e.g., 12h34m12.6s or 12:34:12.6
dec J2000 declination, e.g., 34d12’23.1” or 34:12:23.1
name string new name for source
calCode char ’ ’ calibration code, typically A, B, C for calibrators,

G for a gated pulsar, or blank for normal target
naifFile string name of leap seconds file (e.g., naif0010.tls for ephemeris
ephemObject string name or number of object in ephemeris file
ephemFile string path of ephemeris file (either .bsp or .tle format
doPointingCentre bool true Whether the pointing centre should be correlated

(only ever turned off for multi-phase center)
addPhaseCentre string contains info on a source to add; see below

To add additional phase centers, add one or more “addPhaseCentre” parameters to the source setup. In
the parameter, the RA and dec must be provided. A name and/or calibrator code can be added as well. For
example: addPhaseCentre=name@1010-1212/RA@10:10:21.1/Dec@-12:12:00.34 .

An antenna section allows properties of an individual antenna, such as position, name, or clock/LO
offsets, to be adjusted. Note that the “late” convention is used in clockOffset and clockRate, unlike the
“early” convention used in the .vex file itself (see §5.1).

113

Name Type Units Defaults Comments
name string new name to assign to this antenna
polSwap bool False swap the polarizations (i.e., L ⇔ R) for this antenna
clockOffset float us vex value overrides the clock offset value from the vex file
clockRate float us/s vex value overrides the clock offset rate value from the vex file
clockEpoch date vex value overrides the epoch of the clock rate value; must be present

present if clockRate or clockOffset parameter is set
deltaClock float us 0.0 adds to the clock offset (either the vex value or the

clockOffset above
deltaClockRate float us/s 0.0 adds to the clock rate (either the vex value or the

clockRate above
X float m vex value change the X coordinate of the antenna location
Y float m vex value change the Y coordinate of the antenna location
Z float m vex value change the Z coordinate of the antenna location
format string force format to be one of VLBA, MKIV, Mark5B, S2, or

one of the VDIF types
file [string] (none) a comma separated list of data files to correlate
filelist string a filename listing files for the DATA TABLE (see §7.18)
networkPort int The eVLBI network port to use for TCP/UDP. A non-number indicates

raw mode attached to an ethernet interface. Both force NETWORK media
type in .input file.

windowSize int TCP window size in kilobytes for eVLBI. Set to < 0 in bytes for UDP
UDP MTU int Same as setting windowSize to negative of value.

For raw mode, the number of bytes to strip from ethernet frame.
vsn string override the Mark5 Module to be used
zoom string uses the global zoom configuration with matching name for

this antenna; zoom=Zoom1 will match ZOOM block called Zoom1

addZoomFreq string adds a zoom band with specified freq/bw as shown:
freq@1810.0/bw@4.0[/specAvg@4][/noparent@false]

freqClockOffs [float] microsec adds clock offsets to each recorded frequency using the format:
freqClockOffs=f1,f2,f3,f4; must be same length as
number of recorded freqs, first value must be zero

loOffsets [float] Hz adds LO offsets to each recorded frequency using the format:
loOffsets=f1,f2,f3,f4; must be same length as
number of recorded freqs.

tcalFreq int Hz 0 enables switched power detection at specified frequency
phaseCalInt int MHz 1 zero turns off phase cal extraction, positive value is

the interval between tones to be extracted
toneGuard float MHz 0.125 of bw when using toneSelection smart or most don’t select tones

within this range of band edge, if possible
toneSelection string smart tone selection algorithm; see below
sampling string REAL set to COMPLEX for complex sampled data
fake bool False enable a fake data source

Possible values of “tone Selection” are:

smart write the 2 most extreme tones at least toneGuard from band edge (default)
vex write the tones listed in the vex file to FITS
none don’t write any tones to FITS
all write all extracted tones to FITS
ends write the 2 most extreme tones to FITS
most write all tones not closer than toneGuard to band edge

114

Setup sections are enclosed in braces after the word SETUP and a name given to this setup section. The
setup name is referenced by a RULE section (see below). A setup with the special name default will be
applied to any scans not otherwise assigned to setups by rule sections. If no setup sections are defined, a
setup called default, with all default parameters, will be implicitly created and applied to all scans. The
order of setup sections is immaterial.

Name Type Units Defaults Comments
tInt float sec 2 integration time
FFTSpecRes float MHz 0.125 frequency resolution of FFT
specRes float MHz 0.5 output freq res (must be mult. of FFTSpecRes
nChan int 16 number of channels per spectral window; must be 5m · 2n
specAvg int 1 how many channels to average together after correlation
fringeRotOrder int 1 fhe fringe rotation order: 0=post-F, 1=linear, 2=quadratic
strideLength int 16 number of channels to “stride” for fringe rotation, etc.
xmacLength int 128 number of channels to “stride” for cross-multiply accumulations
numBufferedFFTs int 1 number of FFTs to do in a row for each datastream, before XMAC
doPolar bool True correlate cross hands when possible
postFFringe bool False do fringe rotation after FFT?
binConfig string none if specified, apply this pulsar bin config file to this setup
freqId [int] [] = all frequency bands to correlate
outputBandwidth float|’auto’ MHz n/a Target bandwidth when auto determining outputbands, or,
addOutputBand [string] n/a Add an outputband with explicit placement and bandwidth

freq@1810.0/bw@4.0

Note that either “FFTSpecRes” and “specRes” can be used, or “nChan” and “specAvg” can be used,
but the two sets cannot be mixed.

Zoom channels can be configured in a special section and referenced from ANTENNA sections to minimize
complexity of the .v2d file. Each ZOOM section has a name and one or more “addZoomFreq” parameters,
with the same format as they would have in the ANTENNA block.

Output bands can be defined in the SETUP block in DiFX 2.7 (OUTPUTBAND block in DiFX 2.8) via
“outputBandwidth” or alternatively “addOutputBand”. Permitted “outputBandwidth” values are ’auto’ to
auto-determine the bandwidth, or, an explicit bandwidth as a decimal value in MHz. Band placement is
automatic. For explicit placement and bandwith instead use “addOutputBand”.

Earth Orientation Parameter (EOP) data can be provided via one or more EOP sections. EOP data
should be provided either in the .v2d file or in the vex file, but not both. Normally the vex file would be
used to set EOP values, but there may be cases (eVLBI?) that want to use the vex file from sched without
any modification. Like ANTENNA and SOURCE sections, each EOP section has a name. The name must
be in a form that can be converted directly to a date (see above for legal date formats). Conventional use
suggests that these dates should correspond to 0 hours UT; deviation from this practice is at the users risk.
There are four parameters that should all be set within an EOP section:

Name Type Units Defaults Comments
tai utc float sec TAI minus UTC; the leap-second count
ut1 utc float sec UT1 minus UTC; Earth rotation phase
xPole float arcsec X component of spin axis offset
yPole float arcsec Y component of spin axis offset

A rule section is used to assign a setup to a particular source name, calibration code (currently not
supported), scan name, or vex mode. The order of rule sections does matter as the order determines the
priority of the rules. The first rule that matches a scan is applied to that scan. The correlator setup used for
scans that match a rule is determined by the parameter called “setup”. A special setup name SKIP causes

115

matching scans not to be correlated. Any parameters not specified are interpreted as fully inclusive. Note
that multiple rule sections can reference the same setup section. Multiple values may be applied to any
of the parameters except for “setup”. This is accomplished by comma separation of the values in a single
assignment or with repeated assignments. Thus

RULE rule1

{

source = 3C84,3C273

setup = BrightSourceSetup

}

is equivalent to

RULE rule2

{

source = 3C84 3C273

setup = BrightSourceSetup

}

is equivalent to

RULE rule3

{

source = 3C84

source = 3C273

setup = BrightSourceSetup

}

The names given to rules (e.g., rule1, rule2 and rule3 above) are not used anywhere (yet) but are required
to be unique.

Name Type Units Comments
scan [string] one or more scan name, as specified in the vex file, to select with this rule
source [string] one or more source name, as specified in the vex file, to select with this rule
calCode [char] one or more calibration code to select with this rule
mode [string] one or more modes as defined in the vex file to select with this rule
setup string The name of the SETUP section to use, or SKIP if this rule describes scans

not to correlate

Note that source names and calibration codes reassigned by source sections are not used. Only the names
and calibration codes in the vex file are compared.

There are currently two modes of operation supported by vex2difx. The mode used in the vast majority
of situations is called normal and is the default if none is specified. Currently one alternative mode, profile,
is supported. This mode is useful for generating pulse profiles that would be useful for pulsar gating,
scrunching, and binning. The difference compared to normal mode is that the standard autocorrelations are
turned off and instead are computed as if they are cross correlations. This allows multiple pulsar bins to be
stored. No formal cross correlations are performed. To be useful, one must create and specify a .binconfig

file and select only the pulsar(s) from the experiment.
See http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/vex2difx for more complete infor-

mation and examples.

116

http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/vex2difx

7.43 .xcb

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be accom-
panied by a corresponding .xcb file. This file contains cross-correlation spectra for each antenna for each
baseline. In order to minimize the output data size, spectra for the same source will only be repeated once
per 15 minutes. The file contains many concatenated records. Each record has the spectra for all baseband
channels for a particular baseline and has the following format which is very similar to that of the .acb files.
Note that no spaces are allowed within any field. Values in typewriter font without comments are explicit
strings that are required.

Line(s) Value Units Comments
1 timerange:

MJD integer ≥ 1 MJD day number corresponding to line
start time string e.g., 13h34m22.6s
stop time string e.g., 13h34m52.0s
obscode:

observe code string e.g., MT831
chans:

nchan ≥ 1 number of channels per baseband channel
x

nBBC ≥ 1 number of baseband channels
2 source:

source name string e.g., 0316+413
bandw:

bandwidth MHz baseband channel bandwidth
MHz

3 to 2+nBBC bandfreq:

frequency GHz band edge (SSLO) frequency of baseband channel
GHz polar:

polarization 2 chars e.g., RR or LL
side:

sideband U or L for upper or lower sideband
bbchan:

bbc 0 Currently not used but needed for conformity
3+nBBC to ant1 number ≥ 1 number of first antenna
2+nBBC(nchan + 1) ant2 number ≥ 1

ant1 name string
ant2 name string
channel number ≥ 1 = chan + (bbc− 1) · nchan for chan, bbc ≥ 1
amplitude ≥ 0.0
phase degrees

The above are repeated for each cross correlation spectrum record. This file can be plotted directly with
plotbp or handled more automatically with difxsniff.

7.44 .vex, .skd, .vex.obs, & .skd.obs

The vex (Vlbi EXperiment) file [11] format is a standard observation description format used globally for
scheduling observations and for driving the correlation thereof. The original vex file for an experiment is
typically created by sched or sked. In the former case (the case used by most astronomical VLBI), the vex
file has the unfortunate file extension .skd; in the later, the file extension is usually the less confusing .vex

. These two vex formatted files contain only observation-scheduling based information. A small amount
of information based on the actualities of the observation are added by db2vex, producing a new vex file

117

with an additional file extension .obs . Please see vex documentation external to this manual for more
information.

7.45 .vis

Program zerocorr (§6.108 produces visibility output in a format documented here. There is one line of
output per generated spectral point. Each line has 8 columns as per the following table:

Line Contents
1 Channel (spectral point) number (counts from zero)
2 Frequency relative to first spectral channel (Hz)
3 Real value of the visibility
4 Imaginary value of the visibility
5 Amplitude
6 Phase
7 Autocorrelation of the first datastream (real only)
8 Autocorrelation of the second datastream (real only)

7.46 .zerocorr

Program zerocorr (§6.108 is a simple cross correlator. It is limited to correlating one visibility spectrum
from one baseband channel and can only make use of a constant offset delay model. The section documents
the file that drives this program. This file consists of 17 lines of text. The first 7 lines describe properties
of the data from the first antenna and the following (7) lines describe properties of the second antenna as
follows:

Line Contents
1 (8) Input baseband data file name
2 (9) Data format (e.g., Mark5B-2048-16-2)
3 (10) Input sub-band to process (0-based index)
4 (11) Offset into the file (bytes)
5 (12) Size of FFT to perform over input bandwidth (2× nchan)
6 (13) First channel (spectral point) to correlate
7 (14) Number of channels to correlate (negative indicates LSB)

The last three lines dictate the output data files and the number of FFTs to process:

Line Contents
15 Name of output visibility (.vis; §7.45) file
16 Name of output .lag (§7.29) file
17 Number of FFTs to process (if -1, run on entire input files)

8 XML message types

The difxmessage library (§??) implements a system for sending and receiving messages using XML format.
This section documents the “difxMessage” XML document type that is used for interprocess communication
during correlation within DiFX. These messages are sent via UDP multicast and are thus restricted to fit
within one standard-sized Ethernet packet (∼1500 bytes). Various logging and monitoring programs (mk5mon,
cpumon, and errormon, all eventually to be replaced by a single interactive operator interface) can accept
these messages and perform actions based on their content. Several different message types are derived from
the following XML base type:

118

<?xml version="1.0" encoding="UTF-8"?>

<difxMessage>

<header>

<from>from</from>

<to>to</to>
<mpiProcessId>mpiId</mpiProcessId>
<identifier>idString</identifier>
<type>messageType</type>

</header>

<body>

<seqNumber>seqNum</seqNumber>

body
</body>

</difxMessage>

The italicized fields are as follows:

from the hostname of the sender.

to the intended recipient of the XML document. Note that this field is typically not included for report-only
messages as it’s intended purpose is for directing commands to particular recipients. Also note that
multiple to fields can be present in a message. Three “shortcuts” are currently allowed: all causes all
receiving programs (such as mk5daemon) on all software correlator cluster members to respond; mark5
causes all Mark5 units to respond; and swc causes all non-Mark5 units to respond.

mpiId the MPI process id of the sender. If there are D (typically 10) datastream processes (i.e., Mark5
units playing back), then mpiId takes on the following numbers:

value mpifxcorr process type
< 0 a process not associated with mpifxcorr

0 the manager process of mpifxcorr
1 to D one of the datastream processes
≥ D + 1 one of the core (computing) processes

idString an additional string identifying the source of the message. For messages sent from mpifxcorr, this
will be the job id, for example job3322.000. Other programs will typically set this field to the name
of the program sending the message.

messageType the type of message being sent:

119

value description of message type
DifxAlertMessage an error message.
DifxCommand a command message.
DifxDatastreamMessage Not yet implemented
DifxDiagnosticMessage used by mpifxcorr to pass out diagnostic-type info such as buffer states
DifxFileTransfer used by the new (USNO) GUI to cause a file to be sent to or from a specified host
DifxFileOperation used by the new (USNO) GUI to cause some operation to a file (such as mkdir, mv, rm . . .) to be performed
DifxGetDirectory used by the new (USNO) GUI to request a Mark5 .dir file
DifxInfoMessage not used?
DifxLoadMessage CPU and memory usage (usually sent by mk5daemon).
DifxMachinesDefinition used by the new (USNO) GUI to remotely write a .machines file
DifxParameter specify new parameter value to an mpifxcorr process.
DifxSmartMessage contains smart data for one drive of a module; usually sent by mk5daemon

DifxStart tell head node to start a difx job.
DifxStop tell mk5daemon to stop a particular instance of mpifxcorr.
DifxStatusMessage status of the mpifxcorr program.
DifxTransientMessage used by the VFASTR project to indicate an event of interest
DifxVex2DifxRun used by the new (USNO) GUI to remotely run vex2difx

Mark5DriveStatsMessage Mark5 module conditioning statistics for one disc.
Mark5StatusMessage status of the mark5 unit and modules.
Mark5VersionMessage versions, board types and serial numbers of a Streamstor card.

Many of these message types are described in sections that follow. For those without documentation,
the source file difxmessage.h in the difxmessage package contains the full set of parameters.

seqNum the sequence number (starting at 0) of messages coming from the particular program running on
the particular host. The number advances by 1 for each sent message and can be used to detect lost
packets.

body message contents that are specific to the particular messageType. See sections that follow.

A “C” language library for generating, multicasting, receiving, and parsing XML documents of this type
is used within some of the programs, including mpifxcorr (the core of the DiFX [2] software correlator)
and mk5daemon (a program that runs on each Mark5 unit that is responsible for multicast communication
when mpifxcorr is not running), that transact these XML documents. The default multicast group to be
used is 224.2.2.1 and the default port is 50200, though these can be overridden with environment variables
DIFX MESSAGE GROUP and DIFX MESSAGE PORT respectively.

8.1 DifxAlertMessage

This section describes messages with messageType = DifxAlertMessage. These messages come from mpifx-
corr or the head node agent and contain an error message string and severity code that should be displayed
to the operator and logged.

The body of the message contains:

<difxAlert>

<alertMessage>message</alertMessage>
<severity>severity</severity>

</difxAlert>

The italicized fields are as follows:

message a string containing the error message.

120

severity an integer indicating the severity. The severity scale is based on that from the EVLA and has
values with the following meanings:

value name meaning
0 FATAL processing has failed; a restart is needed
1 SEVERE data from one or more station is affected badly
2 ERROR data from one or more station may be affected; e.g., low weights
3 WARNING minor error of no consequence to ongoing processing
4 INFO informational only
5 VERBOSE overly verbose infomation
6 DEBUG debugging information

8.2 DifxCommand

This section describes messages with messageType = DifxCommand. These messages require the to field to
be set and cause the intended recipient to take an action.

The body of the message contains:

<difxCommand>

<command>command</command>
</difxCommand>

The italicized field is as follows:

command the command to execute. Commands are not case sensitive and should be among the following:

command action
GetVSN cause the mark5 unit to multicast loaded VSNs if possible.
GetLoad request CPU and memory usage to be reported.
ResetMark5 cause SSReset and ssopen to be run to reset Streamstor.
StartMark5A start the Mark5A program.
StopMark5A stop the Mark5A program.
KillMpifxcorr kill with signal 9 (sigkill) any process with name mpifxcorr.
Clear reset the mk5daemon; useful sometimes if mpifxcorr crashes.
Reboot causes machine to reboot.
Poweroff causes machine to power down.
Copy <bank> <vsn> <scans> causes scans to be copied to local disk.

8.3 DifxLoadMessage

This section describes messages with messageType = DifxLoadMessage. These messages contain CPU
and memory utilization information and are voluntarily sent by various nodes of the cluster, to be
received by the operator interface.

The body of this message type contains:

<difxLoad>

<cpuLoad>cpuLoad</cpuLoad>
<totalMemory>totalMemory</totalMemory>
<usedMemory>usedMemory</usedMemory>

</difxLoad>

The italicized fields are as follows:

121

cpuLoad CPU utilization on the cluster node. It is a floating point value containing the average
number of processes scheduled at one time.

totalMemory total memory on node, in kiB.

usedMemory used memory on node, in kiB.

8.4 DifxParameter

The structure of a DifxParameter message body is as follows:

<difxParameter>

<targetMipId>id</targetMpiId>
<name>name</name>
<index1>index1</index1>
.

.

.

<indexN>indexN </indexN>

<value>value</value>
</difxParameter>

Such a message is intended to allow a parameter, possibly qualified with array indices, to be set to a
particular value. A possible use, for example, is to change a station clock value within a running DiFX
instantiation or to enable generation of fast dump spectra for transient searching.

The italicized fields are as follows:

targetMpiId the MPI process Id (rank) to target with this message. Values zero and greater target
specific MPI processes, with zero always being the manager process. Other special values include:

value meaning
-1 all MPI processes
-2 all core (processing) processes
-3 all datastream processes

name the name of the parameter to set. For array types, the following index values specify the
element to set.

indexN an integer specifying the index of the particular array axis.

value a string containing the value.

8.5 DifxSmartMessage

The Self-Monitoring, Analysis and Reporting Technology (SMART) protocol is used by hard drives
for health monitoring. The Mark5 units support this and make the SMART values available via the
Streamstor API. mk5daemon accesses this information periodically and on module insertion so that
operators can be made aware of obvious and potential module problems as early as possible. The
DifxSmartMessage multicast message is used to convey such SMART information for individual drives
in a module. It should be expected that when such messages are sent a separate message will come for
each drive (typically 8) of a module.

The body of this message type contains:

122

<difxSmart>

<mjd>mjd</mjd>
<vsn>vsn</vsn>
<slot>slot</slot>
<smart id=smartId value=value />

.

.

.

</difxSmart>

Multple smart tags (8 to 16 are usual) will usually be present in each smart message.

The italicized fields are as follows:

mjd The time at which the SMART value was extracted.

vsn The module number.

slot The slot of the hard drive in the module (0 to 7).

smartId The identifier for the value being represented. This is usually a small (¡ 300) positive integer.
More information can be found at http://en.wikipedia.org/wiki/S.M.A.R.T.

value The value of the monitor point corresponding to the smartId .

8.6 DifxTransientMessage

This section describes messages with messageType = DifxTransientMessage. This message is related
to a commensal transient search project. A message of this type should be sent as soon as possible
after detection; it is likely that no provisions will be made for data copying that does not start before
resources assigned to the job are released. When a possible transient is identfied by a detecting program
which looks at autocorrelations it sends this message to all Mark5 units. Once correlation is complete,
the mk5daemon program on appropriate Mark5 units will take a few seconds to copy data from the
time range(s) of interest.

The body of this message type contains:

<difxTransient>

<jobId>jobId</jobId>
<startMJD>startMJD</startMJD>

<stopMJD>stopMJD</stopMJD>

<priority>priority</priority>
<destDir>destDir</destDir>
<comment>comment</comment>

</difxTransient>

The italicized fields are as follows:

jobId The job indentification string. This is required so that only relevant Mark5 units take action
on the received message.

eventId A string containing the name of the event as declared by the transient detector.

startMJD The start time (MJD) of the segment of data to copy.

stopMJD The stop time (MJD) of the segment of data to copy. Note that the total amount of data
to be copied should be low enough to have an inconsequential impact on correlation throughput.

123

http://en.wikipedia.org/wiki/S.M.A.R.T.

priority A floating point value indicating the relative importance of capturing this event. In jobs
where many triggers occur this field will be used to select the most important ones to save to
disk. Higher numbers indicate higher priority.

destDir (optional) A final directory to store the baseband data. If not provided, a default will be
assumed. Note that behavior is undefined if different destination directories are provided within
a single job.

classification (optional) A string provided by the transient detector containing a tentative classifica-
tion.

comment (optional) A comment that could be appended to a log file.

All data and a log file will be stored in a subdirectory of the data staging area named jobId . The
log file, at a minimum, will contain the list of events sent by the transient detection program and a
log of the copying process, indicating any errors that may have occured. The subdirectory will have
a temporary name starting with a period (.) until all data copy for the job in question is complete.
The use of this message type is demonstrated in Fig. 2.

8.7 DifxStart

This document type causes the head node to spawn a correlator job. The doument contents describe
which resources to use and which .input file to use.

The body of the message contains:

<difxStart>

<input>input file</input>
<force>forceOverwrite</force>
<manager node="node" />

<datastream nodes="nodes" />

<process nodes="nodes" threads="count" />

<env>envvar=value</env>
<difxProgram>program</difxProgram>

<difxVersion>version</difxVersion>
<mpiWrapper>mpiWrapper</mpiWrapper>
<mpiOptions>options</mpiOptions>

</difxStart>

In the above XML file, exactly one manager node must be supplied. There must be at least one
datastream node (one per antenna being correlated). There must be at least one process node. Zero
or more (up to a maximum of 8) environment variables may be set. The italicized fields are as follows:

input file complete path to the .input file for this correlation.

forceOverwrite cause any previous correlator output of this job to be deleted before starting the
correlation. A value of 1 or True will enable overwrite.

value the value of the environment variable.

node the name of the node being assigned, e.g. mark5fx02 or swc000.

nodes a list of node names. The list members should be space or comma separated.

count the maximum number of threads to schedule. If not specified, 1 will be assumed. This applies
only to process nodes.

envvar an environment variable to set before running mpifxcorr.

124

program the name of the software correlator executable. This is optional and defaults to mpifxcorr

if not set.

version the version (e.g., DIFX-1.5.4) of DiFX to run.

mpiWrapper the name of the program used to start the MPI processes. This field is optional and
defaults to mpirun if none is provided.

options extra options to pass to mpirun. This is optional; sensible defaults are assumed if not explicitly
set.

Note that multiple <process /> tags can be specified, each with its own thread count. Each tag’s
thread count only affects those nodes specified in that tag. If version is provided, then a wrapper
script called runmpifxcorr.version is expected to be in the default path which sets the environment
for the version of DiF to actuallyt run.

8.8 DifxStatusMessage

This section describes messages with messageType = DifxStatusMessage. This message type is only
produced by mpifxcorr or the programs immediately responsible for starting and stopping it.

The body of the message contains:

<difxStatus>

<state>state</state>
<message>message</message>
<visibilityMJD>visibilityMJD</visibilityMJD>

<weight ant=antId wt=weight>
</difxStatus>

The italicized fields are as follows:

state the state of mpifxcorr, which must be one of the following:

state meaning
Spawning the mpifxcorr processes are being started (not sent by mpifxcorr).
Starting all the processes are ready to begin.
Running the correlator is running.
Ending the correlator has reached the end of the job.
Done the correlation has completed.
Aborting correlation is stopping early due to an error.
Terminating correlation is stopping early due to signal.
Terminated correlation has stopped early.
MpiDone all of the MPI processes have ended (not sent by mpifxcorr).
Crashed mpifxcorr crashed; usually sent by mk5daemon.

message a string containing information for the operator.

visibilityMJD the time-stamp (MJD + fraction) of last completed visibility record.

antId the antenna id for the associated weight, ranging from 0 to Nant − 1.

weight the data weight for the associated antenna, ranging from 0 to 1. Note that in each XML
document of this type there will in general be one weight value for each antenna being correlated.

125

8.9 DifxStop

Messages with messageType = DifxStop are typically sent by the DiFX Operator Interface to the
mk5daemon running on the correlator head node to cause a particular instance of DiFX to be killed.

The body of the message contains:

<difxStop>

</difxStop>

8.10 Mark5DriveStatsMessage

Mark5 module conditioning is done periodically to ensure top performance of Mark5 modules. Each
disk in the module gets written across its whole surface to identify bad areas and to calibrate the
electronics. One message applies to one disk of the module

The body of the message contains:

<difxDriveStats>

<serialNumber>serial</serialNumber>
<modelNumber>model</modelNumber>
<size>size</size>
<moduleVSN>vsn</moduleVSN>
<moduleSlot>slot</moduleSlot>
<startMJD>startMJD</startMJD>

<stopMJD>stopMJD</stopMJD>

<binN >statsN </binN >

<type>statsType</type>
<startByte>startByte</startByte>

</difxDriveStats>

The italicized fields are as follows:

serial the serial number of the disk.

model the model number of the disk.

size the size of the disk, in GB.

vsn the module Volume Serial Number (VSN).

slot the location of the disk within the module, from 0 to 7.

startMJD the time when conditioning began.

stopMJD the time when condtioning ended.

statsN the histogram count for bin N for N in the range 0 to 7.

statsType type of operation which is one of condition, condition read, condition write, read,
write, unknown, test.

startByte if not present, assumed to be zero; only relevant for some types of operations.

8.11 Mark5StatusMessage

This section describes messages with messageType = Mark5StatusMessage. This message type cones
from either mpifxcorr or mk5daemon (or perhaps another program that makes heavy use of Mark5
units and wishes to volunteer status information).

The body of the message contains:

126

<mark5Status>

<bankAVSN>vsnA</bankAVSN>

<bankBVSN>vsnB</bankBVSN>

<statusWord>statusWord</statusWord>
<activeBank>activeBank</activeBank>
<state>state</state>
<scanNumber>scanNumber</scanNumber>
<scanName>scanName</scanName>
<position>position</position>
<playRate>playRate</playRate>
<dataMJD>dataMJD</dataMJD>

</mark5Status>

The italicized fields are as follows:

vsnA the VSN of the module in bank A.

vsnB the VSN of the module in bank B.

statusWord a hexadecimal number with the following bits: TBD

activeBank the active bank, either A or B for banks A and B respectively, N if the unit is in non-bank
mode, or blank if no modules are active.

state the state of the Mark5 unit:
state meaning
Opening the Streamstor card is being opened.
Open the Streamstor was successfully opened and is ready for use.
Close the Streamstor has been closed.
GetDirectory the unit is recovering the directory or finding data.
GotDirectory the unit successfully found needed data on the module.
Play the unit is playing back data.
PlayStart the unit is about to start playback.
PlayInvalid the unit is playing data, but the data is invalid.
Idle the unit is not doing anything; no process has control of it.
Error the unit is unusable due to an error.
Busy the unit is busy and cannot respect commands.
Initializing the Streamstor card is initializing.
Resetting the unit is resetting the Streamstor card.
Rebooting the unit is about to reboot.
Poweroff the unit is about to turn off.
NoData the unit is not playing data since there is none that is appropriate.
NoMoreData the unit has played all the data for the job and is stopped.
Copy data is being copied off the module to a local disk.

scanNumber the directory index number for the current scan. This number starts at 1.

scanName the name associated with the current scan.

position the byte position being accessed. Note that this number can be very large (> 246).

playRate the time-averaged playback rate in Mbps.

dataMJD the date stamp (MJD + fraction) of the most recently read data.

8.12 Mark5VersionMessage

This section describes messages with messageType = Mark5VersionMessage. This message comes from
mk5daemon. It is typically broadcast once upon the start of mk5daemon and when requested.

127

The body of the message contains:

<mark5Version>

<ApiVer>ApiVer</ApiVer>
<ApiDate>ApiDate</ApiDate>
<FirmVer>FirmVer</FirmVer>
<FirmDate>FirmDate</FirmDate>
<MonVer>MonVer</MonVer>
<XbarVer>XbarVer</XbarVer>
<AtaVer>AtaVer</AtaVer>
<UAtaVer>UAtaVer</UAtaVer>
<DriverVer>DriverVer</DriverVer>
<BoardType>BoardType</BoardType>
<SerialNum>SerialNum</SerialNum>

<DaughterBoard>

<PCBType>PCBType</PCBType>
<PCBSubType>PCBSubType</PCBSubType>
<PCBVer>PCBVersion</PCBVer>
<FPGAConfig>FPGAConfig</FPGAConfig>
<FPGAConfigVer>FPGAConfigVersion</FPGAConfigVer>

</DaughterBoard>

</mark5Version>

Note that the DaughterBoard tag and its subtags are optional and are not broadcast if a daughter
board is not detected on the Mark5C unit. The italicized fields are as follows:

ApiVer The software API version of the Streamstor API.

ApiDate Date associated with the above.

FirmVer The version of the firmware that is loaded.

FirmDate Date associated with the above.

MonVer The version of the Monitor FPGA code.

XbarVer The version of the cross bar FPGA code

AtaVer The version of the ATA disk controller FPGA code.

UAtaVer The version of the UATA disk controller FPGA code.

DriverVer The version number of the driver code.

BoardType The type of Streamstor board.

SerialNum The serial number of the Streamstor board.

PCBType The type of Streamstor daughter board.

PCBSubType Subtype of the above, if any.

PCBVersion The version of the daughter board.

FPGAConfig Name of the FPGA configuration.

FPGAConfigVersion Version number of FPGA configuration.

128

9 DiFX alert messages

This section attempts to list all of the messages you might see coming from the software correlator with
some explanation about their meaning. For some messages, certain actions to be taken are suggested. Each
subsection below contains descriptions of the messages for a particular severity level, ordered from most
severe to least severe. There are almost 500 distinct messages that could be produced by mpifxcorr as of
DiFX version 1.5.2, thus no effort has been made to be compete in the descriptions here. Effort has been
made to document the most important ones in detail. Messages are sorted first by their severity level and
are then roughly alphabetical within each subsection.

9.1 Fatal

All fatal errors will cause immediate termination of the correlation project. Most such errors would occur
at the very start of a job as the input files are being processed.

• Bin phase breakpoints are not in linear ascending order!!!: The pulsar bins are not listed in
phase order in the .binConfig file. Each BIN PHASE END entry must be greater than the previous and
they must all be in the range 0 to 1.

• Cannot create output directory outDir: flag - aborting!!!: The output directory could not be
created. The most common cause is an existing output file from a previous attempt to correlate the
job in question. Other possible causes include: permission issues, inaccessibility of output directory to
the DiFX head node, and output filesystem being full.

• Cannot locate stationName in delay file delayFile - aborting!!!: The specified delay file does not
contain needed information for a station called stationName. This should never happen for data going
through the correlator in a standard way.

• Cannot open Streamstor device. Either this Mark5 unit has crashed, you do not have
read/write permission to /dev/windrvr6, or some other process has full control of the
Streamstor device.: This message will only come from a Mark5 unit that is requested to play back
data. The most likely cause of such a problem is the Streamstor card getting stuck in a compro-
mised state, although fresh correlator installations that may not have left /dev/windrvr6 with global
read/write permission is a second likely cause of this problem. The fix likely requires a reboot of the
Mark5 unit. On occasion a full power cycle of the Mark5 unit (not just a soft reboot) is required.

• Cannot open file inputFile - aborting!!!: The .input file named inputFile is not readable by
the software correlator. This could be due to one of a number of issues, including: read permission
problems, the request file not existing, or the file existing but not visible from one or more of the
software correlator nodes.

• Cannot open delay file delayFile - aborting!!!: The .delay file named delayFile is not readable
by the software correlator. This could be due to one of a number of issues, including: read permission
problems, the request file not existing, or the file existing but not visible from one or more of the
software correlator nodes.

• Cannot open output file outputFile - aborting!!!: The output file could not be created. The most
common cause is an existing output file from a previous attempt to correlate the job in question. Other
possible causes include: permission issues, inaccessibility of output directory to the DiFX head node,
and output filesystem being full.

• Cannot open pulsar config file binConfigFile - aborting!!!: The specified pulsar bin file, binCon-
figFile cannot be opened. This could be due to one of a number of issues, including: read permission
problems, the request file not existing, or the file existing but not visible from one or more of the
software correlator nodes.

129

• Cannot open uvw file uvwFile - aborting!!!: The specified .uvw file, uvwFile cannot be opened.
This could be due to one of a number of issues, including: read permission problems, the request file
not existing, or the file existing but not visible from one or more of the software correlator nodes.

• Cannot quad interpolate delays with post-f fringe rotation - aborting!!!: Two mutually
exclusive options (QUAD DELAY INTERP and POST-F FRINGE ROT) were both enabled in the .input

file.

• Caught an MPI exception!!! errorString: A process communication error has occured causing the
correlator to terminate. The outcome of such an event cannot be good; contact a DiFX developer.

• Config encountered inconsistent setup in config file - aborting!!!: One or more of the configura-
tions (group of settings defined in the .input file) is either illegal or incompletely defined. Usually this
message will come with another more detailed error message. In any case, either there is a correlator
version mismatch or there is something wrong with the .input file.

• Core received a request to process data from time time which does not have a config -
aborting!!!: This is likely due to failed consistency check in the software correlator that resulted from
a logic error in the code. This should be reported to a DiFX developer.

• Could not find station stationName in the uvw file when making rpfits header!!! This
station is used in the correlation so I will abort!!!: This error only occurs with RPFITS output
format which is not supported by this documentation – please seek other sources of assistance if needed.

• Could not locate any of the specified sources in the specified time range - aborting!!!: The
correlator gave up since none of the sources to be correlated appeared in the .uvw file. This should
never happen for data going through the correlator in a standard way.

• Could not locate a polyco to cover the timerange ...: A pulsar polynomial for a certain time
period could not be found. The person supplying the puslar polynomial should be contacted.

• DataStream assumes long long is 8 bytes, it is x bytes - aborting!!!: This should not occur
on any modern operating system. If this message is seen, please contact a DiFX developer and be sure
to indicate exactly which operating system and computer type you are using.

• DataStream assumes int is 4 bytes, it is x bytes - aborting!!!: This should not occur on any
modern operating system. If this message is seen, please contact a DiFX developer and be sure to
indicate exactly which operating system and computer type you are using.

• DataStream mpiid: expected x bytes, got y bytes - aborting!!!: In an eVLBI read, the wrong
number of bytes was received, indicating a mismatch in send/receive setups. Check the setup at both
ends and try again.

• Datastream mpiid: implied UDP packet size is negative - aborting!!!: When considering the
size of a UDP header, an unphysical packet size results. This should only occur when attempting UDP
based eVLBI.

• Datastream mpiid: read too few UDP packets: bytestoread=x udp offset=y bytes=z -
aborting!!!: Fewer than expected UDP packets were received in an eVLBI transfer (FIXME – more
details please!)

• Datastream mpiid: read too many UDP packets: bytestoread=x udp offset=y bytes=z -
aborting!!!: More than expected UDP packets were received in an eVLBI transfer (FIXME – more
details please!)

130

• Datastream mpiid: could not allocate databuffer (length size) - aborting!!!: A memory
allocation failed. This would probably be due to either a developer error or attempt to run a job on
an underpowered computer. In any case, the developer should be contacted.

• Developer error: Cannot handle delays more negative than maxDelay. Need to unimple-
ment the datastream check for negative delays to indicate bad data - aborting!!!: The
maximum negative delay (which is quite large) has been exceeded. This is almost certainly a logic
error in the software and should be reported to a DiFX developer.

• Developer error: in Mk5Mode::Mk5Mode, mark5stream is null: An internal error related to
initializing a Mark5 decoder has occurred. Contact a DiFX developer.

• Developer error: in Mk5Mode::Mk5Mode, framesamples is inconsistent (x/y): An internal
inconsistency has been found in the Mark5 data frame size that would lead to downstream errors. This
could only be caused by a software logic error. Contact a DiFX developer.

• Developer error: UVW has not been created!!!: This message would come from an internal
consistency check that failed. If this occurs, the DiFX developers should be notified as this indicates
a logic error inside the software correlator.

• genMk5FormatName : formatType format : framebytes = frameBytes is not allowed: An
illegal frame size was specified in the .input file. This should never happen for data going through
the correlator in a standard way. If you see this message it is probably due to a programming error
and the DiFX developers should be notified.

• genMk5FormatName : unsupported format encountered: A data format not handled by the
software correlator has been requested in the .input file.

• Input file out of order!: There is an error in the input file. This might be caused by using an input
file formatted for one version of mpifxcorr on a different version or by an incorrectly written file.

• Manager aborting correlation!: The configuration of a visibility buffer was not OK. There are
many possible causes for this, but is most likely due to a logic error in the software. Contact a DiFX
developer if this is encountered.

• Mk5DataStream::readnetwork bytestoread too large (x/y) - aborting!!!: An eVLBI read size
is too large. (FIXME – more details here please!)

• mpifxcorr must be invoked with at least x processors (was invoked with y processors) -
aborting!!!: For a correlation of N datastreams (usually equal to the number of antennas), at least
N + 2, but preferably even more, processes must be started.

• NativeMk5DataStream::NativeMk5DataStream stub called, meaning mpifxcorr was not
compiled for nativemk5 support, but it was requested (with MODULE in .input file)
- aborting!!!: Correlation directly off a Mark5 module requires compiling against the Streamstor
libraries which was apparently not done but requested by the .input file. Contact the person respon-
sible for your correlator setup and ask them to properly link the Streamstor libraries to the mpifxcorr

executable.

• No config section in input file: The input file is missing its config section and hence correlation
cannot proceed. This should never happen for data going through the correlator in a standard way.

• Not enough baselines are supplied in the baseline table (x) compared to the number
of baselines (y)!!!: The .input file requests more baselines in the common table than there are
enumerated in the baseline table. This should never happen for data going through the correlator in
a standard way.

131

• Not enough datastreams are supplied in the datastream table (x) compared to the number
of datastreams (y)!!! The .input file requests more datastreams (nominally equal to the number
of antennas) in the common table than there are enumerated in the baseline table. This should never
happen for data going through the correlator in a standard way.

• Please invoke with mpifxcorr ...: The correlator was not started according to is usage. See §6.71
for more details.

• Polyco polycoId / subcount is malformed The pulsar polynomial file is not compliant (possibly due
to manual editing).

• RPFITS not compiled in - aborting: RPFITS output format is requested, but support for RP-
FITS is not compiled into mpifxcorr. Either requested output format, or recompile mpifxcorr with
RPFITS. Note: This document does not contain instructions for RPFITS installations – you are on
your own!

• Samplesperblock is less than 1, current implementation cannot handle this situation -
aborting!!!: An illegal data sub-mode has been requested. Contact a developer.

• Unknown data format formatName: A data format (e.g., VLBA, Mark4, LBA) has been requested
that cannot be processed.

• Unknown data source sourceName: A data source (e.g., FILE, MODULE, EVLBI) has been re-
quested that cannot be used.

9.2 Severe

Severe errors typically reflect an unexpected software error. All severe errors are related to a process control
(threading) failure or a failure in a numerical routine. Errors of the severe type are likely to cause widespread
erroneous results or complete failure of correlation. Except during periods of software development errors
of these two types are unexpected. If encountered, they should be reported to a DiFX developer and the
correlation should be reattempted once. Since there are many errors in the “severe” class, all unlikely and
with the same procedure for working around, individual errors of this type are not listed below.

9.3 Error

Messages in the “Error” class are typically fairly significant, often cascading to fatal messages and termination
of the correlation. Many errors of the Mark5 variety result data loss ranging from fractions of a second to
the full job in length. For errors of this type, operator judgement is needed: whether to restart correlation or
keep going will depend on many circumstances. Note that many of the eVLBI and real-time monitor errors
are not documented here yet.

• All data from this module was discarded: ...: Due either to malformed data or a directory file
with incorrect values, no data was deemed suitable for correlation for a particular Mark5 module. It is
probably worth trying to extract the module directory structure again and trying the job again and/or
moving the module to a different unit for playback. It is likely that other jobs using this module will
face a similar problem.

• n consecutive sync errors. Something is probably wrong!: A large number of sync errors were
seen. This probably means that the Mark5 data being read is somehow corrupted.

• All bandwidths for a given datastream must be equal: Currently, mpifxcorr does not allow
different bandwidths on different frequency bands. This will lead to temination of the correlator. The
creator of the .input file should be contacted.

132

• All configs must have the same telescopes! Config m datastream n refers to different
telescopes: The same set of telescopes (antennas) must be used throughout a job. Two configurations
have been found that use different antenna subsets. This will lead to temination of the correlator. The
creator of the .input file should be contacted.

• All LBASTD Modes must have 2 bit sampling - overriding input specification!!!: The
Australian LBASTD data format modes can only handle 2-bit (4 level) quantization at the moment.
The .input file value for QUANTISATION BITS is being ignored here. Probably the maker of the .input
file made a mistake.

• Attempting to get a delay from offset time time, will take first—last source: Correlation
is requested for a time either before or after the list of scans. Data affected by this is likely to have the
wrong delay applied and is unlikely to be useful. The creator of the input files should be contacted.

• Attempting to refer to freq outside local table!!!: The frequency index of a datastream table
exceeds the length of the frequency table in the .input file. This will most certainly cause this
frequency band to be incorrectly correlated.

• Baseline table entry m, frequency n, polarisation product p for datastream q refers to a
band outside datastream q’s range (r): The band index for a baseline table exceeds its legal range.
This will lead to temination of the correlator. The creator of the .input file should be contacted.

• Baseline table entry m has a datastream index outside the datastream table range! Its two
indices are n, p: The baseline table has a datastream index that exceeds the number of datastreams.
This will lead to temination of the correlator. The creator of the .input file should be contacted.

• Cannot clear Mark5 write protect: The software correlator attempts to set the Disk Module State
to PLAYED. This requires temporarily disabling write protection. If this fails, then either the Mark5
unit is in a bad state or the module has a problem.

• Cannot open data file dataFile: The datastream process cannot open the specified file containing
baseband data to be correlated. Correlation will proceed, but no data for an antenna for the duration
of this file will be correlated. Usually this error should be a cause for concern.

• Cannot open polyco file polycoFile: Either file permissions, file location, or non-existence is pre-
venting the file called polycoFile from being opened. This will likely end badly.

• Cannot put Mark5 unit in bank mode: The command to put the Mark5 unit in single bank mode
failed and further commands to the Mark5 unit will probably fail as well. Usually this only happens if
the Mark5 unit is in a bad state. The Mark5 unit probably needs a reboot.

• Cannot read data from Mark5 module...: Read from a Mark5 module failed. No further attempt
to read data from the module will be made. It is strongly recommended that the Mark5 unit be
rebooted and the correlation be reattempted. If the error is reproducible, the additional information
contained at the end of this error message may help diagnose the problem.

• Cannot read the Mark5 module label: The command to retrieve the module label, which includes
the volume serial number (VSN) and the previous state, has failed. This implies trouble with the Mark5
unit or module. First the module should be moved to a different Mark5 unit and the correlation
reattempted. Upon further failure, the module should be checked for problems

• Cannot set Mark5 data replacement mode / fill pattern: Either the command to tell the Mark5
unit to enter real-time playback mode or the command to set the fill pattern have failed; expect more
problems with this Mark5 unit. The Mark5 unit probably needs a reboot.

• Cannot set the Mark5 module state: The software correlator failed to set the Disk Module State
to PLAYED. If this fails, then either the Mark5 unit is in a bad state or the module has a problem.

133

• Cannot set Mark5 write protect: The software correlator attempts to set the Disk Module State
to PLAYED. This requires temporarily disabling write protection. If this fails, then either the Mark5
unit is in a bad state or the module has a problem.

• Cannot unpack Mark5 format data at sampleoffset n from buffer time: An error of this kind
likely represents a logic error in the software correlator and should be reported to a DiFX developer.

• Config m baseline index n refers to baseline p which is outside the range of the baseline
table: The baseline index of a config table exceeds the number of baselines in the baseline table. This
will lead to temination of the correlator. The creator of the .input file should be contacted.

• Config m baseline index n refers to baseline p which is out of order with the previous
baseline ...: Entries in the datastream table are not in the expected order. This will lead to temination
of the correlator. The creator of the .input file should be contacted.

• Could not find a polarisation pair, will be put in position x !!!”: This is due either to an
uncaught inconsistency in the .input file or a logic error in the software correlator. Contact a DiFX
developer.

• Could not find any bands for frequency m of datastream n: This is due either to an uncaught
inconsistency in the .input file or a logic error in the software correlator. Contact a DiFX developer.

• Could not open threadFile - will set all numthreads to 1!!!: The requested .threads file could
not be opened. Possible causes include: permission issues, inaccessibility of directory to the DiFX
head node, and the file simply not existing. The impact of this is that correlation will proceed at a
potentially much reduced speed since each CPU will use only a single processing thread. Accuracy of
the results will not be affected.

• Could not parse LBA file header: An LBA format file appears corrupt. Data for one antenna for
the duration of this file will not be correlated.

• Datastream table entry m has a frequency index (freq n) that refers outside the frequency
table range (p): The .input file has a frequency index error. This will lead to temination of the
correlator. The creator of the .input file should be contacted.

• Datastream table entry m has an input band local frequency index (band n) that refers
outside the local frequency table range (p): The .input file has a frequency index error. This
will lead to temination of the correlator. The creator of the .input file should be contacted.

• Datastream table entry m has a telescope index that refers outside the telescope table
range (n): The .input file has a telescope index error. This will lead to temination of the correlator.
The creator of the .input file should be contacted.

• FFT chunk time for config m, datastream n is not a whole number of nanoseconds (p): In
order to keep track of time properly, each FFT must start on an integer nanosecond boundary. There
are currently no modes supported where this should be a problem, so if you see this message, there is
a more serious problem. Contact a DiFX developer!

• First datastream for baseline n has a higher number than second datastream - reversing!!!:
The entries of the baseline table (indicating which antenna pairs to correlate) should always have the
datastream indices in ascending order. If you see this warning, the correlator is correcting your baseline
ordering, but be aware that this might be hinting that something else might be awry with the .input

file. The creator of the .input file should be contacted.

• Hit the end of the file! Setting the numthread for Core n to 1: The .threads file ended
unexpectedly early and one or more core processes will be forced to use a single processing thread,
with potentially crippling performance penalty. Accuracy of the results will not be affected.

134

• Increment per read in nanoseconds is x - too large to fit in an int: The way timekeeping
works in DiFX, data chunks larger than 231− 1 nanoseconds in length are not possible at the moment.
The maker of the .input file needs to reduce the read size by changing some of the parameters (such
as NUM CHANNELS, BLOCKS PER SEND, or possibly others).

• lastoffsetns less than 0 still! = x: This message probably indicates a logic error in the correlator
program so should be reported to a DiFX developer.

• Mk5DataStream::calculateControlParams : vlbaoffset=x bufferindex=y atsegment=z: A
Mark5 data frame was found unaligned. A corresponding subintegration of data will be invalidated.
A large number of messages of this type probably indicates corrupted data.

• Module VSN contains undecoded scans!: The module directory for module VSN has problems.
Please correct the problem with the directory (as stored in $MARK5 DIR PATH) and try again.

• Module VSN not found in unit!: The .machines file suggested that a specified Mark5 module
would be found this this Mark5 unit but it was not. Check to make sure the module is in the unit.

• Most of the data from this module was discarded: ...: Due either to malformed data or a
directory file with incorrect values, a large fraction of the data for this job from a particular module
was not decodable. It is probably worth trying to extract the module directory structure again and
trying the job again and/or moving the module to a different unit for playback. It is likely that other
jobs using this module will face a similar problem.

• No valid data found. Stopping playback!: According to the directory for the module in question
there is no valid data available to correlate. It is possible that a directory reconstruction will allow
some or all of the data on the module to be retrieved.

• Not all datastreams accounted for in the datastream table for config m: All datastreams
(roughly equivalent to antennas) must be represented in each configuration within the .input file.
This will lead to temination of the correlator. The creator of the .input file should be contacted.

• Number of input bands for datastream m (n) does not match with Mark5 file fileName
(p), will be ignored!!!: The description of Mark5 baseband data (VLBA or Mark4 format) in the
.input file is inconsistent with the actual content. The creator of the .input file should verify that
the format is correctly specified. All data related to this condition will be left uncorrelated.

• Oversamplefactor (m) is less than decimation factor (n): The oversample factor must be
an integer r times the decimation factor. Essentially oversampling is handled by two mechanisms:
decimation of the input data stream in the data unpacker and through spectral selection at the time
of FITS file creation. The oversampling factor of these two approaches must multiply to be the total
Oversamplefactor. This will lead to temination of the correlator. The creator of the .input file should
be contacted.

• Pulsar phase as calculated fromt the polyco will not be accurate over entire range of time
as the frequency is changing too rapidly. The maximum safe calc length would be x - try
reducing blocks per send or numchannels ...: A detail of the way the pulsar polynomial is used
is likely to cause imperfect binning. Please consult with the PI and the creator of the .input file.

• Stale data was received from core n regarding time time seconds - it will be ignored!!!:
One subintegration of data is being discarded as it did not arrive in time for the data to be written
to disk. If this is a chronic problem, increasing the value of VIS BUFFER LENGTH in the .input might
help. A small number of errors of this type is not a problem.

• Telescope antName could not be found in the uvw file!!!: Data for this antenna will not have
useful UVW values in its output file. Contact the creator of the .input file.

135

• There must be an integer number of sends per datasegment. Presently databufferfactor
is m, and numdatasegments is n: The .input file contains an inconsistency in its parameterization
of the various buffer sizes. This will lead to temination of the correlator. The creator of the .input

file should be contacted.

• Trying to read past the end of file!!!: One of the files read by mpifxforr ended prematurely. The
maker of the .input file should be contacted.

• Unknown output format outFormat (case sensitive choices are RPFITS, SWIN and ASCII):
mpifxcorr currently supports 3 output formats (ASCII, DIFX and RPFITS) and the requested one
does not match one of these. This will lead to temination of the correlator. The creator of the .input

file should be contacted.

• Unsupported format or mode requested!!!: A data format has been requested that is recongnized
but not supported by the correlator. Scans using this format (probably all scans for the antenna in
question) will produce no data. The maker of the .input file should be contacted.

• Waited 6 seconds for a Mark5 read and gave up.: A Mark5 read timed out. A small number of
such errors can be tolerated, especially for a module that is known to be bad, but many such messages
should prompt a second correlation attempt after module move / unit reboot.

• We thought we were reading something starting with ’something’, when we actually got
’somethingElse’: The ordering or content of one of the files being read by mpifxcorr does not match
expectations and is thus non-conformant. The maker of the file should be contacted. Note that this
could be caused by a version mismatch between in the input files and the correlator.

• XLRCardReset() failed. Remainder of data from this antenna will not be correlated and
a reboot of this Mark5 unit is probably needed.: It is probably worth reattempting correlation
after Mark5 reboot and possible module move.

• XLROpen() failed. Remainder of data from this antenna will not be correlated and a
reboot of this Mark5 unit is probably needed.: After a successful Streamstor card reset, the
card was not able to be accessed. It is probably worth reattempting correlation after Mark5 reboot
and possible module move.

9.4 Warning

Warning level messages typically relate to a situation that may result in the loss of a very small amount of
data or indicate some other irregularity to the operator. A single warning should not be of concern, but a
large number of warnings should be noted.

• n consecutive fill patterns at time time: Instead of reading data from the module, the Streamstor
card returned fill pattern for this many consecutive data frames. If the module is flakey, it may be
possible to recover more data after moving the module to a different Mark5 unit, but usually warnings
of this type indicate inevitable data loss due to fill pattern replacement.

• n consecutive sync errors starting at readpos p ...: Data was read off the module, but the sync
word was not found. This either indicates attempted playback of the wrong data format, completely
corrupted data, or valid data that has slipped samples and is thus unfortunately not processable by
the software correlator. It might be worth a recorrelation attempt after moving the module, but not
likely.

• Cannot find a valid configindex to set Mk5-related info. Flagging this subint: Application
of the delay model caused a small amount of data to cross a scan boundary in a manner that required
the flagging of an entire subintegration. Such an event should be very rare.

136

• Connection to monitor socket still pending: When real-time monitoring of the output visibilities
is requested but no connection to a monitor program has been establish this warning may appear. A
warning of this type is not associated with any data loss.

• Copying a polyco with no frequency information!: A pulsar polynomial without frequency
information has been found. This could present problems in setting the gate properly across frequency
channels, but could be intentional.

• Could not find station stationName in the uvw file when making rpfits header!!! This
station is not used in this correlation so its parameters will be initialised to 0!!!: The
.input file included a station not in the .uvw file, but this station is not used so the results won’t be
affected. This warning will only be issued for data being written in RPFITS format. The resultant
RPFITS file will still list the missing antenna, but it’s information will be bogus. This could confuse
downstream software.

• Could not open command monitoring socket! Aborting message receive thread.: Real-time
monitoring was wanted, but a problem at the operating system level (perhaps permissions?) prevented
the needed socket from being created. This has no bearing on the quality of the output data.

• Data was received which is too recent (x sec + y ns)! ...: A portion of one visibility record will
have incomplete weight due to forced flushing of the long term accumulator buffer for that visibility
record. A single warning of this type on source change is nothing to worry about, but constant warnings
of this should be reported as this may indicate a different problem.

• DataStream mpiid: could not identify Mark5 segment time (formatName): An eVLBI data
packet could not be decoded and hence its time cannot be determined. This is usually not a problem
since time can be dead-reckoned from previous data and the corrupt packet won’t be used anyway.

• Filterbank not yet supported!!!: The filterbank mode, enabled with the FILTERBANK USED option
in the .input file, was requested, but is currently not supported. When supported, the filterbank
mode will offer options for crisper spectral channels.

• Fractional start time of x seconds plus y ns was specified, but the start time corresponded
to a configuration not specified in the input file and hence we are skipping z seconds
ahead! The ns offset will be set to 0!!!: This warning indicates that the start time of the job is
not contained within a scan to be correlated and the subsequent start time will be rounded to the next
integer second. Except in cases where exact timestamp matching is needed this is not a problem. The
warning is issued as it is not normal for the start time of a job to be outside a scan. If you see this a
lot, contact the person generating your jobs and let them know.

• FXMANAGER caught a signal and is going to shut down the correlator: A terminate signal
was sent to the manager process indicating that the correlator should be stopped immediately. The
resultant output file will be incomplete, but the early stop was probably on purpose so that should be
expected.

• Hit end of first line prematurely - check your polyco conforms to standard! Some values
may not have been set properly, but likely everything is ok: The pulsar polynomial file had
an unexpectedly short first line. Some parameters may not have been properly set so the pulsar gating
may not work. Retrying correlation will not help! If you are concerned, contact the producer of the
polynomial.

• Hit end of second line prematurely - check your polyco conforms to standard! Some
values may not have been set properly. This often happens for non-binary pulsars. Likely
everything is ok. It is possible that the pulsar polynomial file is incomplete, but more likely nothing
is wrong.

137

• Incorrectly set config index at scan boundary! Flagging this subint: A subintegration that
crosses the end of a scan got flagged as a result of a potential format change at this time. This should
happen no more than once per scan and affects only a small fraction of one integration period in most
cases.

• Internal Error, trying to copy pass buffer size: This is an eVLBI related error. (FIXME – please
add more description here)

• Mk5DataStream::calculateControlParams : bufferindex=x >= bufferbytes=y: A fraction of
a dataframe is being discarded due to a frame misalignment. This affects a very small amount of data
and should be very rare.

• Module label is not terminated!: A Mark5 module has an oversized extended serial number label.
This in itself is not a problem but may inidicate either corruption on the module or poor seating of
either the Mark5 module or one of the cables/cards inside the Mark5 unit.

• Module label record separator not found!: No “Disk Module State” was stored on this module.
This is probably due to recording on a very old version of Mark5A or is possibly the result of some
other incompatibility.

• MPI Id mpiid: warning - received a parameter instruction regarding paramName which
cannot be honored and will be ignored! The software correlator can receive a number of different
commands that can affect its dumping of its long-term accumulator to an external piggy-back processor.
If an unrecognized parameter is received a warning of this type will be issued. This is completely
unrelated to correlator data quality.

• No more data for project on module mpiid: Although data on the module extends past the end
of the current job, none of the remaining data is relevant for this job so playback is stopping early.
This is only a problem if it is due to an incorrect transcription of the module directory. It might be
prudent to look at the observe log to see if data is expected.

• No more data on module mpiid: The Mark5 unit sending this message is stopping its reading
before the end of the job since no more data exists. This is only a problem if it is due to an incorrect
transcription of the module directory. It might be prudent to look at the observe log to see if data is
expected.

• Post-f fringe rotation not yet tested - use at your own risk!!!: Post FFT fringe rotation
(enabled with the POST-F FRINGE ROT .input file option) has not been extensively tested. Results
may be OK, but you are on your own!

• Trying to read s seconds past the end of the UVW array!: The .uvw file does not cover an
entire scan. If more than a couple such warnings are seen, the creator of the .input and .calc file
should be notified.

• Waited s sec state=state: A Mark5 module is taking longer than expected to respond. Additional
messages will follow if this situation is serious.

• XLRCardReset() being called!: If a read timeout occurs, the Streamstor card in the Mark5 unit
will be reset. This message indicates that this non-standard procedure is occuring. The result of this
reset will usually either be success (in which case a message will indicate such), failure (in which case
an error message will state that no more data will be read from the module), or a Mark5 unit hang,
and hence the correlation will stop. If this is not successful, it is recommended that the correlation be
retried after rebooting the affected Mark5 unit and possibly moving the module to a different Mark5
unit.

138

9.5 Info

Info messages convey normal messages to the operator.

9.6 Verbose

Verbose messages convey normal messages to the operator that are either not very important or come in
vast quantities; they are typically filtered out of data logging to prevent unnecessary bloat.

9.7 Debug

Debug messages are useful only to developers and don’t usually indicate error conditions. In some cases
they might be useful in diagnosing a problem. None of the debug messages are explicitly documented here
because they will be very version dependent and in general provide little value to the operator.

10 Acknowledgements

Many people have helped in significant ways to get DiFX adapted for the VLBA: Craig West for getting
me interested in software correlators to begin with; Adam Deller for writing DiFX and helping adapt it to
the needs of the VLBA; Steve Tingay and Matthew Bailes for allowing/encouraging Adam to write DiFX
and helping support some of my travel in Australia; Chris Phillips, John Morgan, Helge Rottmann, Mark
Kettenis, Olaf Wucknitz, Mariano Muscas, Geoff Crew, John Spitzak, Roger Cappallo, Walter Max-Moerbeck
and Dmitry Baksheev for contributing code, bug reports, bug fixes, and ideas; Maria Davis, Roopesh Ojha
and Dan Veillette for performing careful comparisons with geodetic data; Walter Alef for hosting the first
and second DiFX workshops in 2007 and 2008 at MPIfR, Bonn; Miguel Guerra for helping define the
database and XML structures and his work on the operator interface; Claire Chandler and Jon Romney/
for project oversight, test planning, advice, and voices of reason; Steven Durand for acquisition of computer
and Mark5 equipment; David Boboltz, Geoff Bower, Mark Claussen, Vivek Dhawan, Alan Fey, Vincent Fish,
Ed Fomalont, David Gordon, Miller Goss, Yuri Kovalev, Matt Lister, Enno Middelberg, James Miller-Jones,
Amy Mioduszewski, Leonid Petrov, Mark Reid, Loránt Sjouwerman and Craig Walker for working directly
with or examinating the output of DiFX and providing valuable feedback; Cormac Reynolds for maintaining
the Difx wiki which hosts valuable information, hosting the third DiFX workshop in Perth, and providing
lots of code; Jan Wagner, Sergei Pogrebenko, Alexander Neidhardt, Martin Ettl, Jongsoo Kim and Randall
Wayth for reporting bugs; Eric Greisen for making AIPS work well with DiFX output; John Benson for
working with me to get data into the VLBA archive; James Robnett, Nicole Geiger, David Halstead and
Pat van Buskirk for substantial computer and networking support and useful discussions on clustering; Mike
Titus and Arthur Niell for providing test data; Leonia Kogan for carefully reviewing the conventions used;
Pete Whiteis and Bill Sahr for contributing to helper programs; Ken Owens and Cindy Gold at Conduant
for helping resolve Mark5 issues; Doug Gerrard, Bob McGoldrick, Adrian Rascon, K. Scott Rowe, Lothar
Dahlmayer, and Jeff Long for assembling and maintaining the VLBA DiFX correlator; Juan Cordova, Paul
Dyer, Lisa Foley, Heidi Medlin, Ken Hartley, Alan Kerr, Jim Ogle, Paul Padilla, Peggy Perley, Tony Perreault,
Betty Ragan, Meri Stanley and Anthony Sowinski for providing operations assistance; Chet Ruszczyk, Dan
Smythe, and John Ball for extensive Mark5 support over the last decade and Emma Goldberg for helping
me work around the idiosyncrasies of LATEX and convince it to typeset this document. If I left anyone of this
list that should be there, and there are probably several of you in that category, I apologize — let me know
and I’ll make sure to add you for the next version’s document.

References

[1] VLBA-DIFX Operations Plan, Brisken, W., 2009, VLBA Sensitivity Upgrade Memo 25, http://

library.nrao.edu/public/memos/vlba/up/VLBASU_25.pdf

139

http://library.nrao.edu/public/memos/vlba/up/VLBASU_25.pdf
http://library.nrao.edu/public/memos/vlba/up/VLBASU_25.pdf

[2] DiFX: A software correlator for very long baseline interferometry using multi-processor computing
environments, Deller, A. T., Tingay, S. J., Bailes, M. & West, C., 2007, PASP 119, 318, http:

//xxx.lanl.gov/abs/astro-ph/0702141

[3] DiFX2: A more flexible, efficient, robust and powerful software correlator, A. T. Deller, W. F. Brisken,
C. J. Phillips, J. Morgan, W. Alef, R. Cappallo, E. Middelberg, J. Romney, H. Rottmann, S. J. Tingay,
R. Wayth, 2011, PASP, 123, 275, http://arxiv.org/abs/1101.0885 The FITS Interferometry Data In-
terchange Format, Flatters, C., AIPS Memo 102, ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/
PUBL/AIPSMEMO102.PS

[4] The FITS Interferometry Data Interchange Convention, Greisen, E., AIPS Memo 114r, ftp://ftp.aoc.
nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEM114.PDF

[5] Specification for enhanced Mark 5 module directory, Whitney, A., et al., http://www.haystack.mit.

edu/tech/vlbi/mark5/mark5_memos/081.pdf

[6] Mark5 User Directory Formats, Ruszczyk, C.A., Eldering, B. & Verkouter, H., http://www.haystack.
mit.edu/tech/vlbi/mark5/mark5_memos/100.pdf

[7] Summary of the b-factor for the VLBA FX correlator, Kogan, L., VLBA Scientific Memo 12, http:

//library.nrao.edu/public/memos/vlba/sci/VLBAS_12.pdf

[8] Tempo, http://www.atnf.csiro.au/research/pulsar/tempo/

[9] JIRA, http://bugs.aoc.nrao.edu

[10] NGAS, http://www.eso.org/projects/dfs/dfs-shared/web/ngas/

[11] VEX parameter definitions, http://www.haystack.mit.edu/tech/vlbi/mark5/vex.html

[12] DiFX Developer Pages, http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/start

140

http://xxx.lanl.gov/abs/astro-ph/0702141
http://xxx.lanl.gov/abs/astro-ph/0702141
http://arxiv.org/abs/1101.0885
ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEMO102.PS
ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEMO102.PS
ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEM114.PDF
ftp://ftp.aoc.nrao.edu/pub/software/aips/TEXT/PUBL/AIPSMEM114.PDF
http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/081.pdf
http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/081.pdf
http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/100.pdf
http://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/100.pdf
http://library.nrao.edu/public/memos/vlba/sci/VLBAS_12.pdf
http://library.nrao.edu/public/memos/vlba/sci/VLBAS_12.pdf
http://www.atnf.csiro.au/research/pulsar/tempo/
http://bugs.aoc.nrao.edu
http://www.eso.org/projects/dfs/dfs-shared/web/ngas/
http://www.haystack.mit.edu/tech/vlbi/mark5/vex.html
http://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/start

Figure 1: The DiFX software correlator block diagram as implemented for the VLBA.

141

mk5

daemon

mpi
fxcorr

mk5

daemon

mpi
fxcorr

mk5

daemon

mpi
fxcorr

mk5

daemon

mpi
fxcorr

mk5

daemon

mpi
fxcorr

mk5cp mk5cp

DiFX
Operator Interface

Realtime
Transient
Detector

Core 1 Core 2 Head Mark5 1 Mark5 2

Transient Box

RAID

Figure 2: The sequence of events leading to transient data capture. First the DiFX Operator Interface sends
a DifxStart message to the head node, causing the mpifxcorr process to be started. The core nodes of
mpifxcorr will transmit autocorrelation data to a real-time transient detection algorithm. As interesting
events are identified, DifxTransientMessage documents are sent to the head node; the mk5daemon process
keeps a prioritized list of events. After correlation completes but before mk5daemon on the head node starts
a series of mk5cp processes to run to copy the baseband data from the Mark5 modules before the next job
starts.

142

	Introduction
	Notation

	The DiFX correlator
	NRAO-DiFX 1.0
	NRAO-DiFX 1.1
	Bugs fixed
	Known problems

	DiFX 1.5.0
	Bugs fixed

	DiFX 1.5.1
	Bugs fixed

	DiFX 1.5.2
	Bugs fixed
	Known problems

	DiFX 1.5.3
	Bugs fixed

	DiFX 1.5.4
	Bugs fixed

	Known bugs
	DiFX 2.0.0
	New features

	Known bugs
	DiFX 2.0.1
	New features
	Bug fixes

	DiFX 2.1
	New features
	Bug fixes

	DiFX 2.1.1
	DiFX 2.2
	New features
	Bug fixes

	DiFX 2.3
	New features
	Bug fixes

	DiFX 2.4
	New Features
	Bug fixes

	DiFX 2.5.1
	New features
	Bug fixes
	Caveats

	DiFX 2.5.2
	Bug fixes

	DiFX 2.5.3
	Updates

	DiFX 2.5.4
	New features
	Bug fixes
	Caveats

	DiFX 2.5.5
	New features
	Bug fixes

	DiFX 2.6.1
	New features
	Bug fixes
	Caveats

	DiFX 2.6.2
	New features
	Updates
	Bug fixes
	Caveats

	DiFX 2.6.3
	DiFX 2.7.1
	DiFX 2.8.1
	New features
	Updates
	Bug fixes
	Caveats

	Features left to implement
	DiFX and AIPS

	DiFX and pulsars
	Pulse ephemeris
	Bin configuration file
	Binary gating
	Matched-filter gating
	Pulsar binning

	Preparing correlator jobs
	Making FITS files

	Conventions
	Clock offsets and rates
	Geometric delays and rates
	Antenna coordinates
	Baseline coordinates
	Visibility phase

	Reference guide to programs and utilities
	apd2antenna (package: difx2fits)
	avgDiFX (package: difxio)
	bp2antenna (package: difx2fits)
	calcif2
	CalcServer
	checkdir (package: mk5daemon)
	checkmpifxcorr (package: mpifxcorr)
	cleanVDIF (package: vdifio)
	condition (package: nrao_difx_db)
	condition_watch (package: nrao_difx_db)
	countVDIFpackets (package: vdifio)
	cpumon (package: difxmessage)
	diffDiFX.py (package: vis2screen)
	difx2fits
	difx2mark4
	difxarch (package: nrao_difx_db)
	difxbuild
	difxcalc11
	difxcalculator (package: difxio)
	difxclean (package: nrao_difx_db)
	difxcopy (package: misc_utils)
	difxdiagnosticmon (package: difxmessage)
	difxlog (package: difxmessage)
	difxqueue (package: nrao_difx_db)
	difxsniff (package: SniffPlots)
	difxspeed (package: vex2difx)
	difxusage (package: nrao_difx_db)
	difxvmf (package: calcif2)
	difxwatch (package: difxmessage)
	DiFX Operator Interface
	e2ecopy (package: nrao_difx_db)
	errormon (package: difxmessage)
	extractSingleVDIFThread (package: vdifio)
	extractVDIFThreads (package: vdifio)
	fakemultiVDIF (package: vdifio)
	fileto5c (package: mark5daemon)
	filterVDIF (package: vdifio)
	generateVDIF (package: vdifio)
	genmachines (package: mpifxcorr)
	getshelf (package: nrao_difx_db)
	jobdisks (package: mpifxcorr)
	joblist (package: mpifxcorr)
	jobstatus (package: mpifxcorr)
	listcpus (package: mk5daemon)
	makefits (package: difx2fits)
	makemark4 (package: difxdb)
	m5bstate (package: mark5access)
	m5d (package: mark5access)
	m5findformats (package: mark5access)
	m5fold (package: mark5access)
	m5pcal (package: mark5access)
	m5slice (package: mark5access)
	m5spec (package: mark5access)
	m5test (package: mark5access)
	m5time(package: mark5access)
	m5timeseries (package: mark5access)
	m5tsys (package: mark5access)
	mk5cat (package: mk5daemon)
	mk5control (package: mk5daemon)
	mk5cp (package: mk5daemon)
	mk5daemon (package: mk5daemon)
	mk5dir (package: mark5daemon)
	mk5erase (package: mark5daemon)
	mk5mon (package: difxmessage)
	mk6cp (package: mark6sg)
	mk6gather (package: mark6sg)
	mk6ls (package: vdifio)
	mk6mon (package: difxmessage)
	mk6summary (package: mark6sg)
	mk6vmux (package: vdifio)
	mpifxcorr
	oms2v2d (package: vex2difx)
	padVDIF (package: vdifio)
	plotapd (package: SniffPlots)
	plotbp (package: SniffPlots)
	plotwt (package: SniffPlots)
	printDiFX.py (package: vis2screen)
	printVDIF (package: vdifio)
	printVDIFgaps (package: vdifio)
	printVDIFheader (package: vdifio)
	psrflag (package: difxio)
	record5c (package: mark5daemon)
	recover (package: mk5daemon)
	reducepoly (package: difxio)
	searchVDIF (package: vdifio)
	splitVDIFbygap (package: vdifio)
	startdifx (package: mpifxcorr)
	statemon (package: difxmessage)
	stopmpifxcorr (package: mpifxcorr)
	stripVDIF (package: vdifio)
	tabulatedelays (package: difxio)
	testdifxinput (package: difxio)
	testdifxmessagereceive(package: difxmessage)
	testmod (package: mk5daemon)
	testseqnumbers (package: difxmessage)
	vdif2to8 (package: vdifio)
	vdifbstate (package: vdifio)
	vdifChanSelect (package: vdifio)
	vdifd (package: vdifio)
	vdiffold (package: vdifio)
	vdifspec (package: vdifio)
	vex2difx
	VDIF issues
	Mark5B issues
	Media specification
	Pulsars

	vexpeek (package: vex2difx)
	vlog (package: vex2difx)
	vmux (package: vdifio)
	vsn (package: mk5daemon)
	vsum (package: vdifio)
	zerocorr (package: mark5access)

	Description of various files
	.aapd
	.abp
	.acb
	.apc
	.apd
	.bandpass
	.binconfig
	.bootstrap
	.cablecal
	cal.vlba
	.calc
	.difx/
	Visibility files
	Pulse cal data files
	Switched power files

	.difxlog
	.speed
	.speed.out
	$DIFX_MACHINES
	.dir
	.filelist
	.FITS
	.fitslist
	.flag
	.<antId>.flag
	.channelflags
	flag
	.im
	.input
	Common settings table
	Configurations table
	Rule table
	Frequency table
	Telescope table
	Datastream table
	Baseline table
	Data Table

	.joblist
	.jobmatrix
	.lag
	.log
	.machines
	.mark4list
	.oms
	.params
	pcal
	.polyco
	.shelf
	.threads
	tsys
	weather
	.wts
	.v2d
	.xcb
	.vex, .skd, .vex.obs, & .skd.obs
	.vis
	.zerocorr

	XML message types
	DifxAlertMessage
	DifxCommand
	DifxLoadMessage
	DifxParameter
	DifxSmartMessage
	DifxTransientMessage
	DifxStart
	DifxStatusMessage
	DifxStop
	Mark5DriveStatsMessage
	Mark5StatusMessage
	Mark5VersionMessage

	DiFX alert messages
	Fatal
	Severe
	Error
	Warning
	Info
	Verbose
	Debug

	Acknowledgements

